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Abstract

In this study, we consider multiple types of resource and role allocation design

problems in a group contest with effort complementarity among group members.

We propose an extended CES function form and its maximization for allocation to

cover various forms of CES effort aggregator function, including those applied in

previous studies. We show the allocation rules for multiple kinds of resources to

group members, while previous studies handled only a single kind of resource. Our

allocation rules imply that the more kinds of allocative resources the group manager

holds, the stronger the effort complementarity the group members’ cooperative work

demands to maximize the winning probability. Furthermore, when the roles in the
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group are allocative, all resources and roles should be allocated to a single group

member, even when each group member’s effort is essential. We find that role

allocation powerfully neutralizes effort complementarity.

Keywords: Group contest; CES effort aggregator function; Allocative resources and

roles
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1 Introduction

In groups, we face the group members’ free-rider problem. Once some group members

contribute effort to their group’s win in a contest among groups, the other group members

can obtain the winning benefits without effort. How does a group manager who wants to

maximize his/her group’s winning probability in a group contest promote his/her group

members’ effort contributions to their win by mitigating the free-rider problem within

his/her group? If he/she has nothing controllable in his/her group, he/she merely accepts

their aggregated effort level in Nash equilibrium. If he/she has certain resources or roles

controllable and allocative to his/her group members, the group manager uses them to

promote his/her group members’ effort contributions. In the real world, group managers

usually allocate not only the prize, like a contingency fee, but also productive resources and

roles. Consider R&D competitions among firms. In an R&D division in a firm, the division

manager allocates a monetary prize to the group members conducting R&D when they

win the competition. He/she also allocates equipment to facilitate experiments and roles

in the experiments to his/her group members within the group to win the competition.

The roles allocated to group members do not always result in the same effects on their

effort contributions as the monetary prize because they are qualitatively different. The

roles define how each group member’s effort is converted into his/her group’s impact on

winning. A monetary prize is a winning benefit.

Here, if there is an effort complementarity among group members in their collaborative
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work, it reduces group members’ free-riding incentives because their win depends on each

individual’s effort, which is not substitutive. The group manager has to take into account

the properties of allocative resources and roles and the effort complementarity among the

group members in addition to the differences in their abilities and effort costs in their

cooperative work when he/she allocates them. The group manager may want to allocate

all to a single group member with high ability, who can contribute much effort at low cost

to the group, to benefit from his/her high performance without the free-rider problem.

However, in the case in which the group members’ efforts are strongly complementary

to each other and essential, collaborative work may demand all group members’ efforts.

The group manager then needs to allocate the prizes and resources to all group members,

depending on the degree of effort complementarity. Kolmar and Rommeswinkel (2013)

show the relationship between effort complementarity and aggregated effort level by first

using a CES production function as an aggregator of group members’ efforts in the group

contest literature. In this study, we show how to allocate multiple kinds of resources

and roles among heterogeneous group members with different abilities in a stochastic

group contest with the Tullock-form contest success function. We present the relationship

between the group members’ effort complementarity and the allocation rules using the

CES effort aggregator, following Kolmar and Rommeswinkel (2013), which parameterizes

the level of complementarity in a simple manner. We show that role allocation powerfully

neutralizes effort complementarity, which is different from resource and prize allocations.

A few forms of the CES function and a form similar to it are used as the effort
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aggregators in the group contest literature (Epstein and Mealem 2009; Brookins, Lightle,

and Ryvkin 2015; Choi, Chowdhury, and Kim 2016; Cheikbossian and Fayat 2018; Konishi

and Pan 2020; Crutzen, Flamand, and Sahuguet 2020; Kobayashi and Konishi 2021.).

Most of them use the simple CES function (
∑n

k=1 e
σ
k)

1
σ , where ek is a group member’s

effort, σ is a complementarity parameter, and n is the number of group members, as the

effort aggregator. This CES function cannot cover σ = 0 even in the limit because of

divergence. Brookins et al. (2015) use ( 1
n

∑n
k=1 e

σ
k)

1
σ (the form normalized by 1/n) to

cover σ = 0 in the limit. Kolmar and Rommeswinkel (2013) examined some variables

using a general CES function form g · (
∑n

k=1 ak(ek)
σ)

1
σ .1 Epstein and Mealem (2009) do

not use a CES function, but a similar form,
∑n

k=1 e
σ
k . This form does not cover the strong

complementarity of σ ≤ 0. In this study, we use a CES function that covers a wider

range, −∞ < σ ≤ 1, than the simple CES function.

These previous studies handled a single kind of prize in the contest to promote group

members’ effort contributions. Kobayashi and Konishi (2021) clarify how to allocate the

prize to group members to maximize the winning probability depending on the elasticity

of effort cost and effort complementarity with reference to previous studies. However, as

described above, in the real world, group managers allocate various kinds of resources

and roles to their group members. The allocation rules depend on the effort-aggregator

function form and the properties of the allocative resources and roles. To model these

1In Kolmar and Rommeswinkel (2013), when
∑n

k=1 ak = 1, and in Brookins et al. (2015), the

aggregators become a Cobb-Douglass function when σ = 0 in the limit.
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elements theoretically, we need to tailor the maximization of the function to each effort

aggregator function form and each property of allocative resources and roles. In this

study, we propose an extended CES function form and its maximization to cover various

CES effort aggregator functions, including the forms used in previous studies and vari-

ous allocative resources and roles. Using the results of this maximization, we show the

allocation rules of multiple types of resources and roles. Thanks to the wide coverage of

effort complementarity, we can handle the case in which each group member’s effort is

strongly complementary and essential. By this method, we find that whether to allocate

resources to all group members or to a single one decisively depends on the kinds of con-

trollable variables; more precisely, whether the controllable variables include the roles or

not. When the roles are not allocative and when the effort complementarity is weak, all

resources should be allocated to only the group member with the highest ability in the

group. When the roles are not allocative and when the effort complementarity is strong,

the allocation rules of all kinds of resources follow the same rules, and the resources are

allocated to all group members. The rules are the share of each group member’s ability

raised to the power of the relative complementarity to the elasticity of effort cost. From

the form of rules, we find that the more controllable resources the group manager has, the

stronger the effort complementarity the cooperative work by group members demands.

When the group manager can control the roles of group members, the allocation of all

kinds of resources and roles should be allocated to only the group member with the high-

est ability, even if each group member’s effort has strong effort complementarity and is
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essential. This result indicates that the role allocation within the group represents the

allocation of the essentialness of the respective group member’s effort. This result also

shows that no matter how strong the complementarity of each group member’s effort,

it cannot overcome the reduction in the aggregated effort level by group members’ free

riding when the roles are allocated.

The remainder of this paper is organized as follows. Section 2 presents the proposed

model. In Section 3, we propose an extended CES function form and show the allocation

rules of resources and roles to maximize the group’s probability of winning. In Section 4,

we consider our extended CES function form availability as an effort aggregator. Section

5 concludes the paper by discussing the applicability of our lemmas and future research.

All proofs and calculation details are provided in the Appendix.

2 The model

We consider a contest in which m ≥ 2 groups compete for a prize, focusing on a repre-

sentative group i = 1, 2, ...,m. The population of group i is denoted by n ≥ 2. Group

members choose their effort levels ej, j = 1, 2, . . . , n, which contribute to their group’s

winning probability simultaneously and non-cooperatively. Group members’ efforts are

aggregated by the CES function Xi = (
∑n

k=1 ak(skek)
σ)

1
σ , where −∞ < σ ≤ 1 indicates

the degree of effort complementarity.2 sj > 0 is group member j’s skill, which converts

2Kolmar and Rommeswinkel (2013) call this effort aggregator an impact function.
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his/her effort into the contribution to group i. aj is the weight of j’s contribution, which

is viewed as the role assigned to him/her within the group, and we assume
∑n

k=1 ak = 1.

This CES aggregator becomes a linear function when σ = 1, becomes a Cobb-Douglas

function when σ = 0 in the limit, and becomes a function with more effort complemen-

tarity among group members than the Cobb-Douglas function when σ < 0.3 In the latter

two cases, each member’s effort is essential in the sense that if a member contributes no

effort, the aggregate effort Xi is zero. In previous studies, σ is in a limited range, σ > 0 or

−∞ < σ ≤ 1, except for σ = 0 in a simplified CES form (Choi et al. 2016; Cheikbossian

and Fayat 2018; Crutzen et al. 2020; Konishi and Pan 2020; Kobayashi and Konishi

2021). Our model covers a wider range of σ than previous studies to show the relation

between σ and the control variables of the group manager.

The winning probability of group i is described as the Tullock-form contest success

function Pi = Xi/X where X =
∑m

k=1Xk. We assume Pi = 0 when X = 0. The prize

comprises divisible private goods that are shared among members of the winning group,

and the value of the prize is normalized to 1. We denote the share of member j of group

i by vj ∈ [0, 1]. The share is allocated to each group member such that
∑ni

j=1 vj = 1. The

effort cost function of group member j has a constant elasticity β > 1, that is, eβj /(βcj).

cj = c1jc2j · · · cdj, d ≥ 1, is a composite of the limited resources that are allocated to group

member j to reduce j’s effort cost, such as IT equipment. If at least one type of cdj = 0, j’s

3The CES function goes to the Leontief function form as σ → −∞. In this study, we do not consider

this case because it requires a different analysis. See Lee (2012).
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marginal effort cost becomes infinite and he/she contributes nothing. Each kind of limited

resource cdj is essentially complementary for each group member. The expected payoff

for member j of group i is Uj = Pivj − eβj /(βcj). We assume that each group member

j regards all variables except for ej as given and assume that all the above is common

knowledge among all players. We employ the Nash equilibrium as the equilibrium concept

in this group contest game.

Each group member decides his/her effort level to maximize his/her expected payoff,

given the other group members and the other groups’ aggregate effort X − Xi. The

first-order condition of any member j of group i is, by using Pi = Xi/X,

Pi(1− Pi)
eσ−1
j

Xσ
i

ajs
σ
j vj −

eβ−1
j

cj
= 0.

We transpose eβ−1
j /cj to the other side, multiply this expression by cj/e

σ−1
j , raise it to the

power of σ/(β−σ), multiply it by ajs
σ
j , sum all aj(sjej)

σ in group i, raise this expression

to the power of 1/σ, multiply it by X
σ

β−σ

i , and finally raise it to the power of β − σ.

By using Xi = PiX, the aggregate effort Xi at the Nash equilibrium within group i is

implicitly described by

Xβ = P 1−β
i (1− Pi)A, (1)

where A =

[∑n
k=1(a

β
σ
k s

β
kckvk)

σ
β−σ

]β−σ
σ

. A comprises exogenous variables for group mem-

bers and is a CES function form, which is a Cobb-Douglass form when σ = 0 in the

limit.4 Note that cj and vj are homogeneous and interchangeable in A. Group i’s winning

4(a
β
σ
j )

σ
β−σ = a

β
β−σ

j → aj as σ → 0 in A, and recall
∑n

k=1 ak = 1. Therefore, A converges to a
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probability Pi is the share function of group i. We base the existence of a unique Nash

equilibrium in this group contest game on the share function approach. See the details in

Cornes and Hartley (2005). By totally differentiating (1) and substituting A of (1) into

it, we obtain

dPi

dX
=

βPi(1− Pi)

[(1− β)(1− Pi)− Pi]X
< 0, (2)

that is, Pi is monotonically decreasing in X, and we have

dPi

dA
=

−Pi(1− Pi)

[(1− β)(1− Pi)− Pi]A
> 0. (3)

In (1), Pi → 1 as X → 0 and Pi → 0 as X → +∞ if A > 0, in addition to (2). There

is then a unique X∗, where
∑m

k=1 Pk = 1, which means the existence of a unique Nash

equilibrium in this group contest from the share function approach. Furthermore, for any

A < Â, Pi(X
∗;A) < Pi(X

∗; Â) from (3). From this, 1 =
∑

k ̸=i Pk(X
∗) + Pi(X

∗;A) <∑
k ̸=i Pk(X

∗) + Pi(X
∗; Â), and 1 =

∑
k ̸=i Pk(X

∗∗) + Pi(X
∗∗; Â). Then, X∗ < X∗∗ from

(2). Therefore, Pi(X
∗∗; Â) = 1 −

∑
k ̸=i Pk(X

∗∗) > 1 −
∑

k ̸=i Pk(X
∗) = Pi(X

∗;A). The

last inequality means that an increase in A increases the share Pi (group i’s winning

probability) in the Nash equilibrium in this group contest. Therefore, by maximizing A,

group i can maximize its winning probability in the Nash equilibrium. See Kobayashi and

Konishi (2021) and Kobayashi, Konishi, and Ueda (2021) about the details of the above

calculations.

Cobb-Douglass function.
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3 Group manager’s controllable variables

Suppose that there is a group manager who wants to maximize his/her group’s winning

probability Pi in each group. If the group manager has no controllable variable, he/she

is only given the winning probability from the aggregate effort decided by (1) in the

Nash equilibrium. If the group manager can allocate vj, cj, or aj for j = 1, . . . , n to

each group member, he/she can promote his/her group members’ effort contributions

by committing himself/herself to the allocation that maximizes A led in the last section

before the contest. In this section, we show how to allocate these variables in relation to

effort complementarity.5 It should be noted that the form of A depends on the function

forms of the effort aggregator and effort cost. When other variables are included in the

CES effort aggregator or effort cost, A becomes another CES function form. To handle

various CES forms of A, we consider the maximization of the extended CES function form

Y ≡

[
n∑

k=1

(Πq
h=1y

αh
hk )

ρ

] 1
ρ

with t kinds of controllable variables y1k, y2k, . . . , ytk for all k = 1, . . . , n, such that∑n
k=1 yhk = 1 for all h = 1, . . . , t, 1 ≤ t ≤ q. We assume −∞ < ρ ≤ 1 and ρ = 0

in the limit. In particular, we assume each αg ≥ 0 for g = 1, . . . , t when ρ ≥ 0. If ag < 0

5We assume that each group manager cannot contract with each group member depending on either

each member’s effort level or their aggregated effort level. If such a contract is possible, the group manager

can achieve his/her optimal effort level by offering the forcing contract to group members, as shown by

Holmstrom (1982); that is, each group member has nothing if the aggregate effort level does not achieve

the optimal level.
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is also allowed when ρ ≥ 0, we have Y = +∞ for any yhk = 0. We exclude this case.

However, we allow ag < 0 when ρ < 0. To consider the allocation rules, the following four

lemmas and a corollary are useful:

Lemma 1. Suppose −∞ < ρ ≤ 1, ρ ̸= 0, any αg ≥ 0, and any yhk ≥ 0 in Y . The

solution that maximizes Y with y1k, y2k, . . . , ytk for all k = 1, . . . , n and t = 1, . . . , q such

that
∑n

k=1 yhk = 1 for all h = 1, . . . , t is as follows:

1. When ρ
∑t

g=1 αg < 1 or ρ < 1∑t
g=1 αg

, the solution is

y∗1j = y∗2j = . . . = y∗tj =
Πq

h=t+1(y
αh
hj )

ρ

1−ρ
∑t

g=1 αg∑n
k=1Π

q
h=t+1(y

αh
hk )

ρ

1−ρ
∑t

g=1 αg

(4)

for j = 1, . . . , n. The maximized Y becomes the CES form

Y ∗ =

[
n∑

k=1

(
Πq

h=t+1y
αh
hk

) ρ

1−ρ
∑t

g=1 αg

] 1−ρ
∑t

g=1 αg

ρ

. (5)

When t = q,

y∗1j = y∗2j = . . . = y∗tj =
1

n

and Y ∗ = n
1−ρ

∑q
g=1 αg

ρ .

2. When ρ
∑t

g=1 αg ≥ 1, a corner solution that is ywj = 1 for all w = 1, . . . , t with

the highest Πq
h=t+1y

αh
hj , and the other ywl = 0 for l = 1, . . . , j − 1, j + 1, . . . , n is

obtained.6 The maximized Y is Y ∗ = Πq
h=t+1y

αh
hj . When t = q, Y ∗ = 1.

6If there are two or more group members with the highest Πq
h=t+1y

αh

hj in Y , any one of them has

ywj = 1 and the others have ywl = 0. The same applies in the following.
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All proofs are provided in the appendix. In Lemma 1, we exclude both ρ = 0 and

ρ → 0. When ρ = 0, (4) in Lemma 1 becomes 1/n. However, Y may be 0 or ∞. Lemma 1

is not applicable as it is to the case of ρ = 0 even in the limit. To handle ρ → 0 in Lemma

1, we need an additional condition. Let αr = (1 + ρ)/ρ for only a single r ∈ {1, . . . , q}

and
∑n

k=1 yrk = 1 in Y .7 As ρ → 0,

Y → Πn
k=1(yrkΠh̸=ry

αh
hk )

yrk , (6)

that is, a Cobb-Douglass function.8 See the derivation of (6) in the appendix. In (6), if

no yrk is controllable, then Lemma 1 is applicable when ρ = 0 in the limit. Let r = t+1.

We have the next lemma.

Lemma 2. In Lemma 1, suppose αr = (1 + ρ)/ρ for r = t + 1 and
∑n

k=1 yrk = 1. As

ρ → 0, the solution y∗1j = y∗2j = . . . = y∗tj → yrj for j = 1, . . . , n and

Y ∗ → Πn
k=1

(
y
1+

∑t
g=1 αg

rk Πq
h=t+1,h̸=ry

αh
hk

)yrk

. (7)

From this lemma, Lemma 1 holds under the conditions of
∑n

k=1 yrk = 1 and ar =

(1 + ρ)/ρ for r = t + 1. Thus far, no yrk for any k is controllable. We also consider the

case in which each yrk is added to the controllable variables as r = t+1 to maximize (6).

The solution to this maximization then needs to be a corner solution of y1j = y2j = . . . =

ytj = yrj = 1 with the highest Πq
h=t+2y

αh
hj and the other yhl = 0 for h = 1, . . . , t, t + 1

7When
∑n

k=1 yrk ̸= 1, Y is 0 or ∞ in the limit. See Appendix C of Kolmar and Rommeswinkel (2013).
8We obtain a Cobb-Douglass function Y → Πn

k=1(Πh̸=ry
αh

hk )
yrk as ρ → 0 by simply setting αr = 1/ρ

for only a single r ∈ {1, . . . , q} and
∑n

k=1 yrk = 1. ar = (1 + ρ)/ρ is required in Proposition 1.
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and l = 1, . . . , j − 1, j + 1, . . . , n. In fact, we differentiate (6) to the second order with

regard to yrj for every j = 1, . . . , n through the next calculation. Let S = (yrjΠh̸=ry
αh
hj )

yrj .

Then, logS = yrj(log yrj + logΠh̸=ry
αh
hj ) ⇒ S ′/S = log yrj + logΠh̸=ry

αh
hj + 1 ⇐⇒ S ′ =

(log yrjΠh̸=ry
αh
hj + 1)(yrjΠh̸=ry

αh
hj )

yrj .

∂Y

∂yrj
=

d(yrjΠh̸=ry
αh
hj )

yrj

dyrj
Πk ̸=j(yrkΠh̸=ry

αh
hk )

yrk

= (log yrjΠh̸=ry
αh
hj + 1)(yrjΠh̸=ry

αhj

hj )yrjΠk ̸=j(yrkΠh̸=ry
αh
hk )

yrk .

∂2Y

∂y2rj
=

[
(yrjΠh̸=ry

αh
hj )

yrj

yrj
+ (log yrjΠh̸=ry

αh
hj + 1)2(Πh̸=ry

αh
hj )

yrj

]
Πk ̸=j(yrkΠh̸=ry

αh
hk )

yrk > 0.

(8)

For each yrj, (6) is convex. Thus, to maximize the Cobb-Douglass function form of Y ,

yrj = 1 with the highest Πq
h=t+2y

αh
hk and yrl = 0, l = 1, . . . , j − 1, j + 1, . . . , n is needed.

Then, in Lemma 2, the other controllable variables yhl raised to the power of yrl = 0 need

to be zero and yhj = 1. However, such a corner solution cannot maximize (6) as it is

because it includes the indeterminate form 00. Instead, when yrj = 1 and ysl = 0 in the

limit in (7), we can obtain the corner solution.

Lemma 3. In Lemma 2, suppose that yrk is added to the controllable variables as r = t+1.

The solution to the maximization of (7) is yrj = 1 with the highest Πq
h=t+2y

αh
hj , and the

other yrl = 0 for l = 1, . . . , j − 1, j + 1, . . . , n and Y ∗ = Πq
h=t+2y

αh
hk in the limit.

Now we consider the final case in which yt+1k with αt+1 < 0 is added to the controllable

variables when ρ < 0. Unfortunately, it may not be possible to maximize Y with respect
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to y1k, . . . , ytk, yt+1k directly because Y again includes the indeterminate form when we

have the corner solution. However, with regard to y1k, . . . , ytk, case 1 of Lemma 1 always

holds because ρ
∑t

g=1 αg < 1 always holds from ah > 0 for h = 1, . . . , t when ρ < 0.

Therefore, we can maximize Y ∗ in case 1 of Lemma 1 with yt+1k involving αt+1 < 0 for

all k = 1, . . . , n. Then, we have the following lemma:

Lemma 4. Suppose ρ < 0 and suppose that yt+1k with αt+1 < 0 for all k = 1, . . . , n are

the controllable variables in Y ∗ in Lemma 1. The solution maximizing Y ∗ with yt+1k for

all k = 1, . . . , n such that
∑n

k=1 yt+1k = 1 is the following:

1. When ρ
∑t+1

g=1 αg ≤ 1, a corner solution of y∗∗t+1j = 1 with the highest Πq
h=t+2y

αh
hj and

the other y∗∗t+1l = 0 for l = 1, . . . , j − 1, j + 1, . . . , n is obtained. The maximized Y ∗

is Y ∗∗ = Πq
h=t+2y

αh
hj .

2. When ρ
∑t+1

g=1 αg > 1, the solution is

y∗∗t+1j =
Πq

h=t+2(y
αh
hj )

ρ

1−ρ
∑t+1

g=1 αg∑n
k=1 Π

q
h=t+2(y

αh
hk )

ρ

1−ρ
∑t+1

g=1 αg

(9)

for j = 1, . . . , n. The maximized Y ∗ becomes the CES form

Y ∗∗ =

[
n∑

k=1

(
Πq

h=t+2y
αh
hk

) ρ

1−ρ
∑t+1

g=1 αg

] 1−ρ
∑t+1

g=1 αg

ρ

. (10)

In fact, when ρ < 0, αt+1 < 0, ρ
∑t

g=1 αg < 1, ρ
∑t+1

g=1 αg > 1, and the conditions of

Lemma 1 hold, then (4) becomes (9) by substituting (9) into (4). Besides, when ρ < 0,

αt+1 < 0, and ρ
∑t+1

g=1 αg ≤ 1, by substituting the solution yt+1j = 1 with the highest
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Πq
h=t+2y

αh
hj and the other yt+1l = 0 for l = 1, . . . , j − 1, j + 1, . . . , n in case 1 in Lemma 4

into (4), we have y1j = . . . = ytj = 1 and y1l = . . . = ytl = 0 for l = 1, . . . , j−1, j+1, . . . , n

in Lemma 1, which correspond to those in Lemma 4. However, if we substitute this

corner solution into Y directly, Y includes indeterminate forms. By maximizing (5) with

yt+1k, we can avoid these indeterminate forms despite the restricted maximization. This

process is interpreted as a dynamic and backward maximization that maximizes Y with

yt+1k, predicting the second stage in the first stage, and that maximizes it with the other

controllable variables y1k, . . . , ytk in the second stage. In addition, Lemma 4 holds even

when t = 0. In Lemma 4, we maximize Y ∗ only with yt+1k. This is possible without

maximization with the other controllable variables yhk, h = 1, . . . , t and given these

variables. In fact, the proof of Lemma 4 holds when t = 0. Therefore, we have the

following corollary:

Corollary 1. Lemma 4 holds when also t = 0.

Using these lemmas and corollary, we consider the group manager’s maximization

problem. Suppose that the group manager has t kinds of controllable variables of vj

and cj = c1jc2j · · · ct−1j. Group members’ cost reduction parameter cj is a composite of

multiple and complementary resources, including the case of a single kind of resource when

t = 2. Each chj has a limited quantity in each group. The group manager maximizes A

with t kinds of controllable variables vj, c1j, . . . , ct−1j for j = 1, . . . , n, such that
∑n

k=1 vk =

1 and
∑n

k=1 chk = 1 for h = 1, . . . , t − 1. Recall the CES function form of A. These
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controllable variables are homogeneous and interchangeable in A. A one-unit change in

vj is the same as that of chj in A. Because each power of vj and chj is 1 inside the CES

function of A, this case is q = d + 3, α1 = . . . = αd+1 = 1, αd+2 = β/σ, αd+3 = β,

and ρ = σ
β−σ

in Lemma 1. ar = (1 + ρ)/ρ = 1+σ/(β−σ)
σ/(β−σ)

= β/σ and
∑n

k=1 yrk = 1

in Lemma 2 when σ = 0 in the limit. Therefore, in Y , yα1
1j , y

α2
2j , . . . , y

αd+1

d+1j , y
αd+2

d+2j , y
αd+3

d+3,j

are viewed as vj, c1j, c2j, . . . , cdj, a
β
σ
j , and sβj , respectively. The power in (4) and (5) is

ρ

1−ρ
∑t

g=1 αg
= σ/(β−σ)

1−tσ/(β−σ)
= σ

β−(1+t)σ
. By substituting these variables into those in Lemmas

1 and 2, we obtain the following proposition:

Proposition 1. Suppose that −∞ < σ ≤ 1 in Xi and A. In a group contest among m

groups, when the group manager can allocate the share of prize vj and the cost reduction

resources c1j, . . . , ct−1j for j = 1, . . . , n such that
∑n

k=1 vk = 1 and
∑n

k=1 chk = 1 for

h = 1, . . . , t−1 to his/her group members, he/she should allocate them to maximize group

i’s winning probability as follows:

1. When (t+ 1)σ < β,

vj = c1j = . . . = ct−1j =
(a

β
σ
j s

β
j Πd

h=tchj)
σ

β−(t+1)σ∑n
k=1(a

β
σ
k s

β
k Πd

h=tchk)
σ

β−(t+1)σ

for j = 1, . . . , n and

A∗ =

[
n∑

k=1

(a
β
σ
k s

β
k Πd

h=tchk)
σ

β−(t+1)σ

]β−(t+1)σ
σ

.

As σ → 0, vj = c1j = . . . = ct−1j → aj for j = 1, . . . , n and A∗ → Πn
k=1

(
a1+t
k sβk Πd

h=tchk

)ak
.
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2. When (t+1)σ ≥ β, vj = c1j = . . . = ct−1j = 1 is allocated to the group member j with

the highest a
β
σ
j s

β
j Πd

h=tchj and nothing is allocated to the other group members, that is,

vl = c1l = . . . = ct−1l = 0 for l = 1, . . . , j−1, j+1, . . . , n. Then, A∗ = a
β
σ
j s

β
j Πd

h=tchj.

In case 1 of Proposition 1, namely the strong complementarity case, by adding a

single kind of chj to the controllable variables, chj itself disappears and t increases by

one in each allocation rule and A∗. If every cost reduction resource cj is controllable,

then cj itself disappears, and then t = d + 1 and each allocation rule is the share of

(a
β
σ
j s

β
j )

σ
β−(t+1)σ = (ajs

σ
j )

β
β−(t+1)σ . That is basically the share of each group member’s ability

sj with both the weight aj and the power of the complementarity σ; however, the weighted

ability becomes more powered as the complementarity becomes weaker, that is, as (t+1)σ

is close to β, and the share of the group member with the highest weighted ability goes

to one. When the group manager has more controllable variables (higher t), this power

effect is stronger. On the other hand, when the complementarity is stronger (σ = 0

in the limit), each share is equal to each weight aj, and each ability becomes neutral.

Furthermore, when the complementarity is much stronger (σ < 0), the shares of the

group members with the high abilities become small because the group manager has to

motivate group members with low abilities for their essentialized effort. σ = 0 is the

threshold for whether each group member’s ability enlarges or contracts each share. A

multiplicity of controllable variables vj and cj amplifies the power effect in the allocation

rule. Note that all allocation rules are 1/n in the case of aj = al and sj = sl for any
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j, l = 1, . . . , n.

With regard to the condition of (t+ 1)σ < β (or (t+ 1)σ ≥ β) in Proposition 1, it is

a threshold condition whether the group manager allocates all resources to only a single

group member or to all group members. Even if all weights and abilities are the same,

this threshold holds. In addition, a multiplicity of controllable variables vj and cj also

amplifies this threshold by tσ under this condition. The more controllable variables the

group manager holds (larger t), the lower the threshold of the complementarity becomes.

In other words, when the group manager has many kinds of allocative resources, stronger

effort complementarity (smaller σ) is needed for all group members’ cooperative work.

Under weak effort complementarity, even if sharing the prize among all group members is

optimal for the group manager when only vj is controllable, allocating all resources and a

whole prize to a single group member can be optimal when vj and cj become controllable.

When t = 1, that is, the case of a single controllable variable, the condition (t+1)σ < β

(or (t+ 1)σ ≥ β) becomes 2σ < β (or 2σ ≥ β) in the proposition. Previous studies have

shown that the number of 2 is the threshold for effort complementarity or elasticity of

effort cost. This threshold indicates whether adding group members heightens its winning

probability and whether sharing the prize among all group members brings a higher

winning probability than the monopolistic allocation to a single group member (Esteban

and Ray 20019; Epstein and Mealem 2009; Cheikbossian and Fayat 2018; Kobayashi and

9In Esteban and Ray (2001), the CES effort aggregator is not used, but rather a cost function with

constant elasticity. In their results, 2 was also obtained as the threshold.
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Konishi 2021). This threshold is critical in the free-rider problem among many group

members, as Orson (1965) points out: the larger a group becomes, the more severe the

free-rider problem. However, previous studies do not explain which property the number

of 2 comes from. This threshold number comes from the maximization twice under the

property of the constant elasticity of complementarity in the aggregator Xi and the effort

cost: the first maximization of CES effort aggregator Xi with regard to group members’

effort ej and the second maximization of CES function form A with regard to the group

manager’s controllable variable vj. The interior solutions in double maximization demand

double σ less than the elasticity of effort cost. This means that allocating the prize to all

group members is equivalent to adding new members to the group in terms of winning

probability.

When c1j is added to the group manager’s controllable variable, the interior solutions

in triple maximization demand triple σ less than the elasticity of effort cost, and so

on. This threshold condition on σ in Proposition 1 is the concavity condition regarding

the controllable variables vj and cj. From the standpoint of maximizing the winning

probability, group members to whom these resources are allocated should not be expanded

one by one as the effort complementarity is stronger, but should be expanded from a single

group member to all group members at once at the threshold.

We consider the case in which a weight aj is added to the controllable variables. Thus

far, vj and cj are variables outside the CES aggregator Xi. aj is inside it. This difference

gives the different powers of the controllable variables in A. The group manager maximizes

20



A with t+ 1 kinds of controllable variables vj, c1j, . . . , ct−1j, aj for j = 1, . . . , n such that∑n
k=1 vk = 1,

∑n
k=1 chk = 1 for h = 1, . . . , t− 1, and

∑n
k=1 ak = 1. Let α1 = . . . = αt = 1,

αt+1 = β/σ, αt+2 = β, q = d+3, and ρ = σ
β−σ

. yα1
1j , . . . , y

αd+1

d+1j , y
αd+2

d+2j , y
αd+3

d+3j are viewed as vj,

c1j, c2j, . . . , cdj, a
β
σ
j , and sβj , respectively. ρ

∑t+1
g=1 αg =

σ
β−σ

(t+ β
σ
) = β−σ+σ+tσ

β−σ
= 1+ σ(t+1)

β−σ
.

When σ > 0, ρ
∑t+1

g=1 αg ≥ 1 . Then, case 2 of Lemma 1 is applicable. When σ = 0 in

the limit, Lemma 3 is applicable to the case as it is. When σ < 0, αt+1 = β/σ < 0 and

ρ
∑t+1

g=1 αg < 1. Then, case 1 of Lemma 4 and Corollary 1, in addition to the discussion

just after Lemma 4, are applicable to this case. We have the next proposition.

Proposition 2. In Proposition 1, suppose that aj for j = 1, . . . , n is added to the con-

trollable variables in A∗. The group manager should allocate it to maximize group i’s

winning probability as follows. When t ≥ 1, aj = 1 is allocated to the group member j

with the highest sβj Πd
h=tchj and the other al = 0 for l = 1, . . . , j − 1, j + 1, . . . , n and

A∗∗ = sβj Πd
h=tchj for any −∞ < σ ≤ 1. Then all resources are allocated to group member

j, vj = c1j = . . . = ct−1j = 1, and vl = c1l = . . . = ct−1l = 0 for the other members l.

When t = 0, aj = 1 is allocated to the group member j with the highest sβj cjvj, and the

other al = 0 and A∗∗ = sβj cjvj.

When σ < 0, σ
β−σ

(t+ β
σ
) < 1 in A. The form inside the brackets in A is concave. At a

glance, the interior solution seems to maximize A. However, this is incorrect because the

brackets are in the denominator of A; the corner solution maximizes A.

Suppose t = d + 1 for a simple interpretation, as well as the discussion just after
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Proposition 1. In the case in which the weight aj is controllable, for any effort comple-

mentarity −∞ < σ ≤ 1 and σ = 0 in the limit, the group manager should always allocate

all resources to the group member with the highest ability sj. This result indicates that

even if each group member’s effort is essential (σ ≤ 0), the group manager should allocate

all roles, resources, and prizes to this group member. What makes such an allocation

possible is that the group manager can relieve the other group members with the lower

abilities of their own roles and can assign those roles to this group member when the

group manager controls the weight aj. The role allocation neutralizes the essentialness of

each group member’s effort. When aj is controllable, the number of controllable variables

t does not affect the allocation of all to a single group member.

Even in the case in which the group manager can allocate only the roles, that is,

he/she cannot concentrate a whole prize to a single group member, he/she should allocate

all roles to a single group member for any effort complementarity. The other group

members then completely free ride on this group member and receive their initial shares

of the prize. Although such free riding happens, it is better for the group manager to

concentrate all roles on the group member. These results show that effort complementarity

cannot overcome the reduction in the aggregated effort level brought about by free riding,

regardless of how strong it is when the roles are allocated.

We consider the peculiarity of the weight aj from another standpoint. We add another

controllable variable bj such that
∑n

k=1 bk = 1, which is inside the parentheses in the

brackets of the CES effort aggregator function: Xi = [
∑n

k=1 ak(bkskek)
σ]

1
σ . bj is viewed
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as a kind of allocative resource that works directly on the effort as well as the skill sj.

Then, A =

[∑n
k=1(a

β
σ
k b

β
ks

β
kckvk)

σ
β−σ

]β−σ
σ

. The lemmas are also applicable to this case.

Suppose t + 1 kinds of controllable variables vj, c1j, . . . , ct−1j, and bk. The condition

of concavity for the expression inside the brackets in A is (t + β + 1)σ < β instead

of (t + 1)σ < β in Proposition 1. Then, the powers in the allocation rules and A∗ in

Proposition 1 are replaced by σ
β−(t+β+1)σ

and Proposition 1 holds. If aj is added to the

controllable variables, Proposition 2 holds. From these results, the behavior of bj is similar

to that of the controllable variables c1j, . . . , ct−1j, and vj outside the CES of A. Comparing

aj with bj as controllable variables inside the CES effort aggregator, the weight aj has

different properties from the other controllable variables inside and outside the CES effort

aggregator. Once the weight is controllable, the work by a single group member is superior

to the collaborative work by all group members in any effort complementarity, even when

each group member’s effort is essential. On the other hand, when only the other variables

inside and outside the CES are controllable, the collaborative work by all group members

is superior to the work by a single group member under strong effort complementarity.

The control of weight aj has a more powerful neutralization of the effort complementarity

than any other variable.
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4 Availability of Y as an effort aggregator

The form of Y can be used as an effort aggregator. By setting some variables in Y , we

obtain the CES function forms used as the effort aggregator. For example, in Y , when

q = 3, α1 = α2 = 1, α3 = 1/σ, ρ = σ, y1j = ej, y2j = sj, and y3j = aj, we have our effort

aggregator Xi = (
∑n

k=1 ak(skek)
σ)

1
σ . When q = 1, α1 = 1, ρ = σ, and y1j = ej in Y , we

have Xi = (
∑n

k=1 e
σ
k)

1
σ in Choi et al. (2016), Cheikbossian and Fayat (2018), Crutzen et

al. (2020), Konishi and Pan (2020), and Kobayashi and Konishi (2021). When q = 3,

α1 = 1, y1j = g, α2 = 1/σ, y2j = aj, α3 = 1, y3j = ej, and ρ = σ, for j = 1, . . . , n, in

Y , Xi = g (
∑n

k=1 ak(ek)
σ)

1
σ in Kolmar and Rommeswinkel (2013) is obtained as well. In

addition, Y becomes the effort aggregator function form Y =
∑n

k=1 y
σ
1k of Epstein and

Mealem (2009), when q = 1, ρ = 1, and α1 = σ. If there is a unique Nash equilibrium

when Y is used as the effort aggregator, the form of Y unifies the various effort aggregators

used in previous studies. Suppose y1j = ej and α1 > 0 in Y as is used effort aggregator,

that is, Xi = [
∑n

k=1(e
α1
k Πq

h=2y
αh
hk )

σ]
1
σ . Recall Pi = Xi/X. We maximize group member j’s

utility Uj = Pivj − eβj /β with ej for j = 1, . . . , n by following the calculation process in

Section 2. As a result, we have

X
β
α1 = P

α1−β
α1

i (1− Pi)Ã

where Ã =

[∑n
k=1

(
α1vk(Π

q
k=2y

αh
hk )

β
α1

) α1σ
β−α1σ

]β−α1σ
α1σ

. The necessary and sufficient condition

for Pi → 1 as X → 0 and Pi → 0 as X → +∞ is α1 < β if Ã > 0. Then, we also have

dPi

dX
=

βPi(1− Pi)

[(α1 − β)(1− Pi)− α1Pi]X
< 0,
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and

dPi

dÃ
=

−Pi(1− Pi)[
α1−β
α1

(1− Pi)− Pi

]
Ã

> 0.

There is then a unique Nash equilibrium from the share function approach, as in Section

2, and we can use Y as an effort aggregator under the condition of α1 < β. Therefore, we

have the following proposition.

Proposition 3. There is a unique Nash equilibrium in the group contest game with the

effort aggregator Xi = [
∑n

k=1(e
α1
k Πq

h=2y
αh
hk )

σ]
1
σ when α1 > 0 and α1 − β < 0.

From this result, Propositions 1 and 2 hold in the various CES functions and Epstein

and Mealem’s effort aggregators used in previous studies.

It should be noted that any CES form and Epstein and Mealem’s form do not always

yield the same results. In the CES effort aggregator, in the case of 2σ > β and 2σ

close to β, while the group manager prefers a single member’s work to group members

collaborative work, the group member prefers collaborative work to his/her sole work.

However, in Epstein and Mealem’s form, this does not occur. Kobayashi and Konishi

(2021) reported this result.

5 Concluding remarks

We conclude our paper by commenting on the applicability of our lemmas and the future

research. The CES effort aggregators, including a similar function to the CES and the

effort cost function with constant elasticity, have various forms, such as in previous studies
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and this study. The form of A in Section 2 depends on these forms. Owing to the lemmas

on our extended CES function in this study, we can maximize the winning probability

with various controllable variables, provided that A is a CES function form. Therefore,

multiple kinds of variables can be pushed into CES aggregators and effort cost functions

as product forms, depending on the various economic situations.

The maximization of the extended CES function form in this study may be applicable

to other issues using a CES production function. As for the literature on group contests,

a remaining issue in this study is to expand our model to dynamic allocation: The group

manager decides each allocation sequentially. The condition may then change from the

case of a simultaneous decision. While the allocation rules are the same in this study,

they may be different in each stage in the case of sequential allocation. These are topics

for future research.

Appendix

Proof of Lemma 1. When ρ > 0, maximizing the expression inside the brackets in

Y , that is, maximizing Y ρ, is equivalent to the maximization of Y . Y ρ is a homogeneous

function of degree ρ
∑t

g=1 αg with regard to the controllable variables y1k, y2k, . . . , ytk and

is additively separable. Then, ρ
∑t

g=1 αg < 1 is necessary for an interior solution to this

maximization. When ρ < 0, minimizing Y ρ is equivalent to maximizing Y because the

brackets in Y become a denominator. Then, an interior solution for this minimization is
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obtained. In fact, any corner solution that includes ywl = 0 for l = 1, . . . , j−1, j+1, . . . , n

yields Y ρ = +∞ and Y = 0, because each term Πq
h=1y

αh
hk is the denominator. Therefore,

when ρ
∑t

g=1 αg < 1, the following procedure is applicable to both ρ > 0 and ρ < 0. The

Lagrange function is defined as

L =

[
n∑

k=1

(Πq
h=1y

αh
hk )

ρ

] 1
ρ

+
t∑

h=1

λh

[
1−

n∑
k=1

yhk

]
.

The first-order conditions are

∂L

∂ysj
=

[
n∑

k=1

(Πq
h=1y

αh
hk )

ρ

] 1
ρ
−1

(Πh̸=sy
αh
hj )

ραsy
αsρ−1
sj − λs = 0

∂L

∂λs

= 1−
n∑

k=1

ysk = 0

for s = 1, . . . , t and j = 1, . . . , n. From any ∂L/∂ysj and ∂L/∂ysl, we have

ysj
ysl

=

(
Πh̸=sy

αh
hj

Πh̸=sy
αh
hl

) ρ
1−αsρ

.

By choosing any u among s = 1, . . . , t and substituting yuj/yul into ysj/ysl, we have

ysj
ysl

=

(
Πh̸=s,uy

αh
hj

Πh̸=s,uy
αh
hl

) ρ
1−αsρ−αuρ

.

Repeating these choice and substitution for all 1, . . . , t, we have

ysj
ysl

=

(
Πq

h=t+1y
αh
hj

Πq
h=t+1y

αh
hl

) ρ

1−ρ
∑t

g=1 αg

.

This expression is

ysl =

(
Πq

h=t+1y
αh
hl

Πq
h=t+1y

αh
hj

) ρ

1−ρ
∑t

g=1 αg

ysj.
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By substituting ysl for all l = 1, . . . , n into ∂L/∂λs and solving it for ysj, we obtain (4):

∑
k ̸=j

(
Πq

h=t+1y
αh
hk

Πq
h=t+1y

αh
hj

) ρ

1−ρ
∑t

g=1 αg

ysj + ysj = 1

ysj(
Πq

h=t+1y
α
hj

) ρ

1−ρ
∑t

g=1 αg

n∑
k=1

(
Πq

h=t+1y
αh
hk

) ρ

1−ρ
∑t

g=1 αg = 1

ysj =

(
Πq

h=t+1y
α
hj

) ρ

1−ρ
∑t

g=1 αg∑n
k=1

(
Πq

h=t+1y
αh
hk

) ρ

1−ρ
∑t

g=1 αg

for s = 1, . . . , t and j = 1, . . . , n. When t = q, ysj/ysl = 1 in the above expression

because all yhk in Y are controllable variables and Πq
h=t+1yhk becomes an empty product

and becomes 1. Thus, ysj = 1/n for any j and s.

Furthermore, substituting all (4) into Y , we obtain the maximized Y , that is, (5):

Y ∗ =

 n∑
k=1

Πt
f=1

 (
Πq

h=t+1y
α
hj

) ρ

1−ρ
∑t

g=1 αg∑n
k=1

(
Πq

h=t+1y
αh
hk

) ρ

1−ρ
∑t

g=1 αg

αf

Πq
h=t+1y

αh
hk

ρ
1
ρ

=
1(∑n

k=1

(
Πq

h=t+1y
αh
hk

) ρ

1−ρ
∑t

g=1 αg

)∑t
g=1 αg

[
n∑

k=1

((
Πq

h=t+1y
α
hj

) ρ
∑t

h=1 αh

1−ρ
∑t

g=1 αg Πq
h=t+1y

αh
hk

)ρ] 1
ρ

=
1(∑n

k=1

(
Πq

h=t+1y
αh
hk

) ρ

1−ρ
∑t

g=1 αg

)∑t
g=1 αg

[
n∑

k=1

(
Πq

h=t+1y
α
hj

) ρ

1−ρ
∑t

g=1 αg

] 1
ρ

=

[
n∑

k=1

(
Πq

h=t+1y
αh
hk

) ρ

1−ρ
∑t

g=1 αg

] 1−ρ
∑t

g=1 αg

ρ

.

When t = q, Y ∗ = n
1−ρ

∑q
g=1 αg

ρ , because Πq
h=t+1y

αh
hk = 1 inside the parentheses in the

brackets in Y ∗.

When ρ
∑t

g=1 αg ≥ 1, Y ρ is a homogeneous function of degree 1 or more. Noting that

Y ρ is additively separable, we have a corner solution of ywj = 1 for all w = 1, . . . , t with
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the highest Πq
h=t+1y

αh
hj and the other ywl = 0 for l = 1, . . . , j − 1, j + 1, . . . , n. Then,

Y ∗ = Πq
h=t+1y

αh
hj . When t = q, Y ∗ = 1. ■

Deriving (6). Let ar = (1 + σ)/σ in Y . Then, Y =
[∑n

k=1

(
y

1+σ
σ

rk Πk ̸=ry
αh
hk

)σ] 1
σ

=[∑n
k=1 y

1+σ
rk (Πk ̸=ry

αh
hk )

σ] 1
σ . By taking the log, we have log Y = (1/σ) log

∑n
k=1 y

1+σ
rk (Πk ̸=ry

αh
hk )

σ.

Then,

lim
σ→0

log Y = lim
σ→0

1

σ
log

n∑
k=1

y1+σ
rk (Πk ̸=ry

αh
hk )

σ = lim
σ→0

∑n
k=1

[
dy1+σ

rk

dσ
(Πk ̸=ry

αh
hk )

σ + y1+σ
rk

d(Πh ̸=ry
αh
hk )σ

dσ

]
∑n

k=1 y
1+σ
rk (Πk ̸=ry

αh
hk )

σ .

Let Z = y1+σ
rk and T = (Πh̸=ry

αh
hk )

σ. Then, logZ = (1 + σ) log yrk ⇒ Z ′/Z = log yrk ⇐⇒

Z ′ = y1+σ
rk log yrk and log T = σ log Πh̸=ry

αh
hk ⇒ T ′/T = logΠh̸=ry

αh
hk ⇐⇒ T ′ =

(Πh̸=ry
αh
hk )

σ log Πh̸=ry
αh
rk . Substitute these into the above limit expression:

lim
σ→0

∑n
k=1

[
y1+σ
rk (log yrk)(Πk ̸=ry

αh
hk )

σ + y1+σ
rk (Πh̸=ry

αh
hk )

σ log Πh̸=ry
αh
rk

]∑n
k=1 y

1+σ
rk (Πk ̸=ry

αh
hk )

σ

=

∑n
k=1 [yrk log yrk + yrk log Πh̸=ry

αh
hk ]∑n

k=1 yrk

=
n∑

k=1

[log yyrkrk (Πh̸=ry
αh
hk )

yrk ] = log Πn
k=1y

yrk
rk (Πh̸=ry

αh
hk )

yrk .

Therefore, Y → Πn
k=1y

yrk
rk (Πh̸=ry

αh
hk )

yrk as σ → 0. ■

Proof of Lemma 2. Now, r = t + 1, each yrk for any k is not a controllable variable.

We maximize (6) with y1k, y2k, . . . , ytk for all k = 1, . . . , n such that
∑n

k=1 yhk = 1 for all

h = 1, . . . , t, 1 ≤ t ≤ q − 1. The Lagrange function is defined as

L̃ = Πn
k=1 (yrkΠh̸=ry

αh
hk )

yrk +
t∑

h=1

µh

[
1−

n∑
k=1

yhk

]
.
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Note that Πn
k=1 (yrkΠh̸=ry

αh
hk )

yrk = Πk ̸=j,l(yrkΠh̸=ry
αh
hk )

yrk(yrjΠh̸=ry
αh
hj )

yrj(yrlΠh̸=ry
αh
hl )

yrl . The

first-order conditions are

∂L̃

∂ysj
= Πk ̸=j,l (yrkΠh̸=ry

αh
hk )

yrk yrj(yrjΠh̸=ry
αh
hj )

yrj−1yrjΠh̸=r,sy
αh
hj αsy

αs−1
sj (yrlΠh̸=ry

αh
hl )

yrl−µs = 0

∂L̃

∂ysl
= Πk ̸=j,l (yrkΠh̸=ry

αh
hk )

yrk (yrjΠh̸=ry
αh
hj )

yrjyrl(yrlΠh̸=ry
αh
hl )

yrl−1yrlΠh̸=r,sy
αh
hl αsy

αs−1
sl −µs = 0

∂L̃

∂µs

= 1−
n∑

k=1

ysk = 0

for s = 1, . . . , t and j, l = 1, . . . , n. From any ∂L̃/∂ysj and ∂L̃/∂ysl, we have

ysj
ysl

=
yrj
yrl

⇐⇒ ysl =
yrl
yrj

ysj.

By substituting ysl for all l = 1, . . . , n into ∂L̃/∂µs and solving it for ysj, we obtain

ysj = yrj/
∑n

k=1 yrk = yrj for s = 1, . . . , t and j = 1, . . . , n because
∑n

k=1 yrk = 1. By

substituting these expressions into (6), we have Πn
k=1(y

1+
∑t

g=1 αg

rk Πq
h=t+1,h̸=ry

αh
hk )

yrk . These

correspond respectively to (4) and (5) when αr = (1+ρ)/ρ and
∑n

k=1 yrk = 1 for r = t+1,

as ρ → 0, by a similar calculation to that used to derive (6). ■

Proof of Lemma 3. Suppose that yrk is added to the controllable variables. Since (7) is

a Cobb-Douglass function form, yrj = 1 with the highest Πq
h=t+2y

αh
hk and the other yrl = 0

are required to maximize (7) from (8). We check that this solution in Lemma 2 does not

include any indeterminate form in the limit. In fact, we have limyrk→0 y
yrk(1+

∑t
g=1 αg)

rk = 1
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in (7) because

lim
yrk→0

log y
yrk(1+

∑t
g=1 αg)

rk = lim
yrk→0

log y
(1+

∑t
g=1 αg)

rk

1/yrk

= lim
yrk→0

(1 +
∑t

g=1 αg)y
∑t

g=1 αg

rk /y
1+

∑t
g=1 αg

rk

−1/y2rk

= lim
yrk→0

(1 +
∑t

g=1 αg)/yrk

−1/y2rk
= 0

by using limx→+0 log x
x = limx→+0 x log x = limx→+0

log x
1/x

= limx→+0
(log x)′

(1/x)′
= limx→+0

1/x
−1/x2 =

0. Therefore, Lemma 3 is obtained. ■

Proof of Lemma 4. When ρ < 0, noting that 1− ρ
∑t

g=1 αg > 0 and ραt+1 > 0,

Y ∗ =
1[

n∑
k=1

(
Πq

h=t+1y
αh
hk

) ρ

1−ρ
∑t

g=1 αg

] 1−ρ
∑t

g=1 αg

−ρ

=
1[

n∑
k=1

y

ραt+1

1−ρ
∑t

g=1 αg

t+1k

(
Πq

h=t+2y
αh
hk

) ρ

1−ρ
∑t

g=1 αg

] 1−ρ
∑t

g=1 αg

−ρ

From this form, it is sufficient to minimize the expression inside the brackets in the

denominator. If ραt+1

1−ρ
∑t

g=1 αg
> 1, that is, ρ

∑t+1
g=1 αg > 1, in y

ραt+1

1−ρ
∑t

g=1 αg

t+1k in the brackets,

the expression inside the brackets in Y ∗ is minimized by the interior solution because the

expression inside the brackets is convex. The Lagrange function is defined as

L̂ =
n∑

k=1

y

ραt+1

1−ρ
∑t

g=1 αg

t+1k

(
Πq

h=t+2y
αh
hk

) ρ

1−ρ
∑t

g=1 αg + ν

[
1−

n∑
k=1

yt+1k

]
.

The first-order conditions are

∂L̂

∂yt+1j

=
ραt+1

1− ρ
∑t

g=1 αg

y

ραt+1

1−ρ
∑t

g=1 αg
−1

t+1j

(
Πq

h=t+2y
αh
hj

) ρ

1−ρ
∑t

g=1 αg − ν = 0

∂L

∂ν
= 1−

n∑
k=1

yt+1k = 0
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for j = 1, . . . , n. From any ∂L̂/∂yt+1j and ∂L̂/∂yt+1l, we have

yt+1j

yt+1l

=

(
Πh=t+2y

αh
hj

Πh=t+2y
αh
hl

) ρ

1−ρ
∑t+1

g=1 αg

.

By substituting yt+1l for all l = 1, . . . , n into ∂L/∂ν and solving it for yt+1j, we have (9)

in the lemma, like the calculation in the proof of Lemma 1. Moreover, by substituting

the solution into Y ∗, we have (10) in the case of 1 in the lemma.

If ραt+1

1−ρ
∑t

g=1 αg
≤ 1, that is, ρ

∑t+1
g=1 αg ≤ 1, the expression inside the brackets in Y ∗ is

minimized by the corner solution because the expression inside the brackets is concave.

Note that because ρ/(1−ρ
∑t

g=1 αg) < 0, each (Πq
h=t+2y

αh
hk )

ρ/(1−ρ
∑t

g=1 αg) is the denomina-

tor in the brackets in the denominator of Y ∗. Then, yt+1j = 1 with the highest Πq
h=t+2y

αh
hk

and the other yt+1l = 0 maximize Y ∗. Then, Y ∗∗ = Πq
h=t+2y

αh
hk . ■
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