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Abstract

This study analyzes group contests with group-specific public-good prizes in which the

“step-by-step” characteristic is introduced. For example, research groups must expend

much effort to publish papers one by one. Once a paper is accepted by a top journal,

a group has a major opportunity to receive a new research grant. On the contrary, if

the paper is rejected by all journals, group members obtain nothing despite the effort

expended. In this study, we focus on this “one or nothing” characteristic and introduce a

step function as a group impact function. We then characterize the Nash equilibria. We

show the condition of the existence of the Nash equilibrium at which no group member

free-rides on the others, showing that the effort levels in the Nash equilibria are less than

the optimal effort level for each group. These results are different from those derived from

the continuous group impact function.
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1 Introduction

In research fields, especially experimental fields in biology, physics, chemistry, and medicine,

groups that carry out research projects are often organized at universities. Group members

must expend much effort, with the associated problem of members’ free-riding, to publish their

papers. Once their findings are published in a top journal, group members obtain benefits,

particularly the opportunity to receive a new research grant1. On the contrary, if their paper

is rejected by all journals, each member obtains nothing despite the effort expended. Thus, all

research groups face the problem of “one or nothing” for each of their publications.

Each group tries to publish papers “step-by-step”, discretely, by continuing its research.

When the grant available is a competitive research grant2, research groups often compete with

other groups. Winning those grants benefits group members by, for example, improving their

experimental equipment, human resources, and research materials. Such grants can thus be

viewed as a type of public-good prize for group members. A group with more published papers

than the others enjoys an advantage in the competition for research grants.

Despite its real-world significance, these characteristics of “one or nothing” and “step-by-

step” have not been the focus of previous studies of group contests (e.g., patent races, research

joint ventures, political lobbying). The achievement of effort, which is called a group impact

function, in the literature on group contests is approximately defined as a continuous function

that is straightforward to deal with. Based on the foregoing, this study examines a contest

in which the achievement of effort increases step-by-step between groups for a group-specific

public-good prize. In the contest, individuals expend effort in their groups to win the prize.

1Grant reviewers’ decision whether to provide a grant to the group depends not only on their research

proposal, but also on the quantity and quality of their published papers. Neufeld, Huber, and Wegner (2013)

point out that the journal impact factor and the number of highly cited papers are relevant to the reviewers’

judgments on the Starting Grants of the European Research Council. Melin and Danell (2006) show the similar

results about a funding program of the Swedish Foundation for Strategic Research.
2For instance, the National Science Foundation and National Institutes of Health in the United States provide

competitive research grant programs. The KAKENHI (Grants-in-Aid for Scientific Research) program in Japan

is another such competitive research grant.
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Each individual’s small effort is insufficient alone and only becomes beneficial when it is added

to the efforts of the other group members. Under this structure, group members can publish a

paper only when their research activities reach a quality level suitable for a publication. This

process is then repeated. We characterize the Nash equilibria and their existence in step-by-step

contests. We find that the existence of the Nash equilibrium always includes an equilibrium at

which no members in each group free-ride on the others, but rather expend positive effort. We

also show that the effort levels at the Nash equilibria are less than the optimal effort level for

each group. Those characteristics at the Nash equilibrium are different from the results on the

continuous achievement of effort in previous studies.

Group contests can be classified into two strands of the literature3: stochastic competition

and deterministic competition (also called all-pay auctions). Under the former, the winner

is determined stochastically and competitors’ effort increases the winning probability in the

contest (Katz, Nitzan, and Rosenberg (1990), Ursprung (1990), Baik (1993), Riaz, Shogren,

and Johnson (1995), and Dijkstra (1998)). Under the latter, the competitor who exerts the

largest effort becomes the winner (see the original study by Baik, Kim, and Na (2001)). In

this study, we focus on a stochastic competition model that has a group impact function

with a step-by-step structure. Baik (2008) studies a contest among groups by considering a

stochastic competition model in which each individual’s effort is beneficial by itself marginally

and continuously in each group. The author’s main result is that only an individual with a

maximum valuation of the public-good prizes exerts effort at the Nash equilibrium, whereas the

others free-ride on such effort. In our model of step-by-step group contests, effort adds to the

winning probability only when the total effort of a group reaches a certain level. Our results

thus differ from those of Baik (2008). At the Nash equilibria in our model, multiple group

members expend effort, including an equilibrium at which all members expend effort without

any free-riding.

Such stochastic group contests for public-good prizes have been studied expansively. Based

on the works of Hirshleifer (1983, 1985), Lee (2012) studies weakest-link contests with group-

3Chowdhury and Topolyan (2016) summarize these studies.
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specific public-good prizes in which the minimum effort level among group members’ effort

levels is their group effort or members’ effort is a perfect complement. Lee explains that such

a structure appears in team competitions of a research contest in which some experts’ works

are indispensable. In that case, multiple Nash equilibria exist, and a unique coalition-proof

Nash equilibrium without free-riding exists. On the contrary, Chowdhury, Lee, and Sheremeta

(2013) examine best-shot4 contests in which the maximum effort level among group members’

effort levels is their group effort. They mention that an example of this structure is the case

of competing research joint ventures (RJVs) in which a high-quality innovation proposed by

one RJV member also benefits the other RJV members. In this case, there are multiple Nash

equilibria, and at each equilibrium, only one player in each group at most exerts effort, whereas

the others free-ride. Chowdhury and Topolyan (2016) combine both contests. They study the

attack-and-defense group contest in which the maximum effort level among group members’

effort levels becomes the effort of one group (attacker) and the minimum effort level among

group members’ effort levels becomes the effort of another group (defender). According to

them, such a structure appears in asymmetric patent competitions between parallel multiple

R&D teams run by one firm and a sequentially specialized R&D team run by another firm. In

this case, multiple Nash equilibria exist at which only one member exerts effort in the attacker

group and all members exert effort in the defender group. There is also a unique coalition-proof

Nash equilibrium5 at which the effort level of the defender group is the largest effort of the Nash

equilibria. The results of these studies except for the perfect complements case show that only

the member with the highest valuation of the public-good prize in each group expends effort,

while the others free-ride.

The remainder of the paper is organized as follows. Section 2 presents our model and

conditions for the Nash equilibrium. Section 3 presents the existence of the Nash equilibria.

4See also the original works of Hirshleifer (1983, 1985).
5With regard to the coalition-proof Nash equilibrium, Bernheim, Peleg, and Whinston (1987) originally

defined the equilibrium concept. However, the coalition-proof Nash equilibrium of Lee (2012) and Chowdhury

and Topolyan (2016) is different from the original concept of Bernheim et al. (1987). Quartieri and Shinohara

(2016) provide the details of the difference and redefine the equilibrium concept of Lee (2012) as the group-proof

Nash equilibrium.
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Section 4 compares the group-optimal effort level with the levels of the Nash equilibria for each

group. Section 5 considers the coalition-proof Nash equilibrium. In Section 6, we conclude with

a brief discussion of our results. All proofs are in the Appendix.

2 The model

2.1 The groups and those members

We consider contests in which two groups6 described as G1 and G2 compete to win a prize (e.g.,

a research grant). The prize is a public good within each group called a group-specific public-

good prize herein following Baik (2008). Gi, (i = 1, 2) consists of ni risk-neutral members,

Gi = {1, 2, 3, . . . , ni}, where ni ≥ 2. They cooperate to win the prize (i.e., they provide effort

to their own group). Let vij represent the valuation of the prize of member j in Gi. We assume

0 < vi1 ≤ vi2 ≤ . . . ≤ vini
.

Let xi
j ≥ 0 be the effort level provided by member j in Gi and Xi be the total effort level

in Gi, that is Xi =
∑ni

j=1 x
i
j. No players can recover their effort already expended irrespective

of whether their group wins the prize. Effort levels are measured in the same unit as the

prize values. We assume that the winner of the prize is decided probabilistically and that

the winning probability of each group depends on its own and the other group’s effort levels.

The winning probability of Gi, which is called the contest success function, is described as

pi(X1, X2) =
f(Xi)

f(X1)+f(X2)
, where 0 ≤ pi ≤ 1 and p1 + p2 = 1. f(Xi) is called the group impact

function following previous studies (Chowdhury, Lee, and Sheremeta (2013), Chowdhury and

Topolyan (2016)). Here, we consider a case in which f(Xi) is a step function, defined as

f(Xi) = t, if Xi ∈ [
∑t

k=0mk,
∑t+1

k=0mk), t = 0, 1, 2, . . .. In the example of a research grant

competition, t means the number of papers published by Gi. The t of G1 and G2 is described

as α and β, respectively, so that α, β = 0, 1, 2, . . .. Gi needs to reach f(Xi) = 1, called the

“achievement level 1,” to acquire a positive winning probability when the other reaches level

6For simplicity, we assume two groups. However, even if N groups (N ≥ 2) are assumed, all the results

presented in this paper hold.
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1 or higher. This function means that each group needs to raise the effort level,
∑t

k=0mk, or

more to reach an achievement level t. We define m0 = 0 and pi =
1
2
when both f(Xi) are zero

7,

for convenience. Then, the winner of the prize is decided by a coin toss, with a probability 1
2
,

when both groups do nothing8. If it raises less effort than the level
∑t

k=0 mk, the group cannot

reach level t, and some of its effort, Xi −
∑t−1

k=0mk, is in vain.

Now, we consider a situation in which the individuals in each group have a lower valuation of

the prize than the cost of the next higher achievement level; in other words, we assume vij < mk

for all positive k, all i ∈ {1, 2}, and all j ∈ Gj
9. Thus, no member has an incentive to expend

sufficient effort to reach the next higher achievement level by him/herself. Group members need

to collaborate with one another to step up their achievement level. We also assume that the cost

for each achievement level is weakly increasing, that is 0 = m0 < m1 ≤ m2 ≤ . . . ≤ mk ≤ . . ..

These assumptions mean that, for example, a research group needs to share the tasks of the

experiments among members to achieve publication and tries to submit papers to journals one

by one. Thus, groups need to expend more effort to reach the same or higher quality results.

Let ui
j be the expected payoff of member j in Gi. Then, the payoff function for member j in

Gi is u
i
j = pi(X1, X2)v

i
j − xi

j. We assume that all members in each group in the contest choose

their effort levels xi
j independently and simultaneously. We assume that all the above is common

knowledge among all players. We employ the Nash equilibrium as the equilibrium concept in

this game. Thus, the strategy at the equilibrium of this game is an n1+n2-tuple vector of each

member’s effort level in each group, at which each member’s effort level is the best response to

the other members’ effort levels in his/her group and the other group. Here, for any member j

in each group, his/her payoff is affected not by particular members’ effort levels in each group,

but by the total effort level of the others
∑

h̸=j x
i
h in his/her group and the total effort level

X−i of the other group, namely the other group’s achievement level f(X−i). Accordingly, even

7This is the same definition as the contest success function for group i, pi, in Baik (2008).
8This assumption does not affect the following results intrinsically. We show the same results even if any

group obtains nothing when Xi = 0 and f(Xi) = 0 for all i. See the Introduction of Quartieri and Shinohara

(2016).
9 We can remove this assumption. Instead, we can assume that some members have higher valuations than

the costs of achievement, namely vij ≥ mk. See also footnote 11.
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if each group is on a vector of achievement levels (α, β) at the Nash equilibrium, there may be

multiple combinations of each member’s effort keeping the vector (α, β). In other words, there

are multiple Nash equilibria on a vector of achievement levels (α, β). From the above structure,

even if more groups participate in this game, namely N groups, the following results presented

in this paper do not change.

2.2 The equilibrium

In this section, we consider the conditions for the Nash equilibrium of the game. Suppose that

G1 can reach the next higher level α from α−1 if member j in G1 expends efforts x
1
j > 0, given

both others’ effort levels x1
−j and the other group’s achievement level f(X2) = β of G2. More

accurately, there is some x1
j > 0 such that x1

j ≤ v1j and x1
j +
∑

h̸=j x
1
h ≥

∑α
k=0 mk. If j expends

effort x1
j , his/her payoff becomes u1

j = f(X1)
f(X1)+f(X2)

v1j − x1
j = α

α+β
v1j − x1

j . If j does not expend

any effort x1
j = 0, his/her payoff is u1

j = α−1
α−1+β

v1j , because
∑α

k=0mk >
∑ni

h=1 x
1
h ≥

∑α−1
k=0 mk;

in other words, the achievement level of G1 remains α − 110. When the former is equal to or

larger than the latter, that is α
α+β

v1j −x1
j − α−1

α−1+β
v1j = β

(α−1+β)(α+β)
v1j −x1

j ≥ 0, j expends effort

x1
j . From this calculation, we obtain the upper limit of j’s effort, x1

j ≤
β

(α−1+β)(α+β)
v1j . Clearly,

β
(α−1+β)(α+β)

v1j < vij < mk. Here, the achievement level of G1 reaches level α when the total

effort of G1 is equal to or larger than
∑α

k=0mk by j’s expense of x1
j . If x

1
j+
∑

h̸=j x
1
h >

∑α
k=0 mk,

By keeping level α, j can save his/her effort level by sufficiently small ϵ > 0. Then, he/she can

increase his/her payoff by ϵ. As a result, j’s optimal strategy is to expend his/her effort for

his/her group such that x1
j =

∑α
k=0 mk −

∑
h̸=j x

1
h and 0 ≤ x1

j ≤
β

(α−1+β)(α+β)
v1j . Thus, the best

response function of member j of G1 is

x1
j(x

1
−j, X2) =


∑α

k=0mk −
∑

h̸=j x
1
h if 0 ≤

∑α
k=0mk −

∑
h̸=j x

1
h ≤ β

(α−1+β)(α+β)
v1j

0 otherwise.

A similar argument is applied to each member in G2. The best response function shows that

member j in Gi expends his/her effort without any extra only when his/her effort is beneficial

10If j expends any effort less than x1
j , j has to pay this effort cost on the same achievement level α−1. Thus,

in this case, j expends nothing.
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for his/her group. The graph of the function is a shape like gradually weakening beats in Figure

1, because β
(α−1+β)(α+β)

is a decreasing function of α, as we show below11.

Let an n1+n2-tuple vector of all players’ strategies be x ≡ (x1
1, x

1
2, x

1
3, . . . , x

1
n1
;x2

1, x
2
2, x

2
3, . . . , x

2
n2
),

which is called a strategy profile hereafter. Then, we have the following lemma.

Lemma 1. x∗ is a Nash equilibrium on the achievement levels (α, β), α, β = 1, 2, 3, . . . if and

only if (i)
∑ni

j=1 x
i∗
j =

∑l
k=0 mk for all (i, l) ∈ {(1, α), (2, β)} and (ii) β

(α−1+β)(α+β)
v1j ≥ x1∗

j for

all j ∈ G1 and α
(α−1+β)(α+β)

v2j ≥ x2∗
j for all j ∈ G2.

All proofs are in the Appendix. This lemma leads to an interesting characteristic. At

the Nash equilibrium, any member in G1 expends effort β
(α−1+β)(α+β)

v1j less than v1j at most.

Those in G2 do as well. In other words, no member ever expends the same effort level as

his/her valuation of the public good because he/she expends only the level of effort that is the

difference in the benefits between making effort and not making effort. Lemma 1 also means

that if multiple α and β meet both (i) and (ii) in the lemma, there is another Nash equilibrium

on another achievement level. In addition, even when there is only a vector of achievement

levels (α, β) which meets (i) and (ii) of Lemma 1, if there are multiple strategy profiles x on

(α, β), we have multiple Nash equilibria. Figure 2 shows the multiple Nash equilibria in the

case of n1 = n2 = 2. The part at which both the best response curves overlap in the figure is

the Nash equilibria on an achievement level (t, s).

In the model of Baik (2008), no matter how little effort each group member expends, it still

11 As we mentioned in footnote 9, we can remove the assumption of vkj < mk. Then, some members with

high valuations are allowed to expend sufficient effort by him/herself to cover the cost from the achievement

level zero through a positive achievement level α̂ ≥ 1, that is
∑α̂

k=0 mk. The best response function changes to

x1
j (x

1
−j , X2) =


∑α̂

k=0 mk −
∑

h̸=j x
1
h if 0 ≤

∑α̂
k=0 mk −

∑
h̸=j x

1
h ≤ α̂

α̂+β v
1
j∑α

k=0 mk −
∑

h̸=j x
1
h if 0 ≤

∑α
k=0 mk −

∑
h̸=j x

1
h ≤ β

(α−1+β)(α+β)v
1
j and α̂ ≤ α− 1

0 otherwise.

The first row on the right-hand side is added in the best response function. In this case, while the analysis

becomes complicated, the equilibrium at which only the member with the largest valuation expends effort is

just added to the results that we show in the following part, instead of the zero Nash (i.e., no members expend

a positive effort).
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increases his/her probability of winning the competition marginally because the group impact

function, namely the achievement of each member’s effort in the group, is continuous. The

main result of Baik (2008) is thus that only a member who has the highest valuation of the

public-good prize expends effort to his/her group at the Nash equilibrium. Even when each

member has his/her own budget of effort, the result is preserved basically. To put it precisely,

members expend effort in the order of the high valuation at the Nash equilibrium and those

who have lower valuations do not expend effort. On the contrary, the Nash equilibrium in our

model does not depend on the order of the valuation. In other words, Lemma 1 states that

members who have lower valuations can expend effort to their groups without depending on

the order of their valuations at the Nash equilibrium. In particular, condition (i) of Lemma 1

does not specify those members who expend effort to their group at the Nash equilibrium; it

only indicates the total effort level that can just cover the cost of the achievement level. At a

glance, our model is similar to the case in which each member has his/her own budget in Baik

(2008) in respect of the upper limit of the effort level. However, both results differ because of

the following facts. In the model of Baik (2008), since the marginal benefit of effort (i.e., a

public-good) of the group member with the highest valuation is larger than that of any other

member, it covers a larger marginal cost of effort than others’ willingness to expend. As a

result, others expend nothing and free-ride. In our model, any effort expended is beneficial to

each group only when some of the other members expend effort together and their total effort

can reach some level. Otherwise, the marginal benefit of anyone’s effort is zero. In addition,

total effort does not depend on the combination of members.

Each member expends his/her effort by the incremental benefits of stepping up to the next

higher level at most; in other words, member j’s effort level is β
(α−1+β)(α+β)

v1j at most. Thus,

the total effort level of G1 is
β

(α−1+β)(α+β)

∑ni

j=1 v
1
j at most for reaching level α. That of G2 is the

same. The next corollary shows the total effort levels of both groups at the Nash equilibrium

from Lemma 1.

Corollary 1. x∗ is the Nash equilibrium on achievement levels (α, β), α, β = 1, 2, 3, . . . only if

β
(α−1+β)(α+β)

∑n1

j=1 v
1
j ≥

∑n1

j=1 x
1∗
j =

∑α
k=0mk and α

(α−1+β)(α+β)

∑n2

j=1 v
2
j ≥

∑n2

j=1 x
2∗
j =

∑β
k=0 mk.
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The conditions of this corollary are not sufficient because (ii) of Lemma 1 is not always met

even if the conditions of the corollary hold. The corollary does not exclude the case in which

someone expends his/her effort x1
j >

β
(α−1+β)(α+β)

v1j or x2
j >

α
(α−1+β)(α+β)

v2j .

From this corollary, we see that the achievement level that each group can reach has an

upper limit given the opponent’s achievement level, once group members are fixed. In addition,

considering members’ own maximum achievement levels and the opponent’s maximum level,

there are upper limits of the achievement levels in the Nash equilibria.

Let ∆α
α−1(β) =

β
(α−1+β)(α+β)

be the difference in G1’s winning probability from α − 1 to α

when G2 is on level β, α, β = 1, 2, 3, . . .. Surely, ∆α
α−1(β) > 0. A decrease in ∆α

α−1(β) as α

increases means a decline in the effort incentive in G1 from condition (ii) of Lemma 1. Given

β, the gap in the difference from α to α + 1 is

∆α+1
α (β)−∆α

α−1(β) = − 2β

(α + 1 + β)(α + β)(α− 1 + β)
< 0.

Thus, ∆α
α−1(β) is a strictly decreasing function of α. This shows that the winning probability

p1 =
α

α+β
is a strictly increasing function of α and that it is monotonically and strictly dimin-

ishing as α increases12. In other words, the higher the level his/her group reaches, the smaller

is the effort incentive of each individual. By calculating the additional gap in those differences,

we have

(∆α+2
α+1(β)−∆α+1

α (β))−(∆α+1
α (β)−∆α

α−1(β)) =
6β

(α + 2 + β)(α + 1 + β)(α + β)(α− 1 + β)
> 0.

The decrease in ∆α+1
α (β) strictly diminishes as α increases. Noting that m0 < m1 ≤ m2 ≤ . . .,∑α

k=0 mk is a weakly increasingly increasing function of α. Thus, there is a unique maximum α

such that β
(α−1+β)(α+β)

∑n1

j=1 v
1
j −

∑α
k=0 mk ≥ 0 and β

(α+β)(α+1+β)

∑n1

j=1 v
1
j −

∑α+1
k=0 mk < 0, given

β. Naturally, the larger
∑n1

j=1 v
1
j in the first term of this inequality, the larger the maximum α

tends to be. Concretely, G1 has a large population, or the group members have high valuations

of the prize; then, G1 tends to have a higher reachable level. A similar argument can be

applied in G2. Given α, the maximum β such that α
(β−1+α)(β+α)

∑n2

j=1 v
2
j −

∑β
k=0mk ≥ 0 and

α
(β+α)(β+1+α)

∑n2

j=1 v
2
j −

∑β+1
k=0 mk < 0 is obtained.

12∆β
β−1(α) and p2 are as well.

10



Next, given α, the difference from β to β − 1 of ∆α
α−1(β) is

∆α
α−1(β)−∆α

α−1(β − 1) =
α− β

(α + 1 + β)(α + β)(α− 1 + β)
. (1)

Here, by fixing α, we consider the change in members’ effort incentive in G1 as β increases.

When β < α, (1) is positive. This means that a rise in β (i.e., G2 reaches the next higher

achievement level) provides a larger effort incentive to each member in G1, who has already

been in an advantageous position. Noting that (1) is symmetrical in both groups, the members

of G2 have smaller effort incentives when β < α. When β = α (i.e., both groups have an

even chance of winning the prize), (1) is zero. Then, the effort incentive in G1 is unchanged,

even when the opponent’s achievement level changes from level β − 1 to β. When β > α,

(1) is negative. Then, the effort incentive in G1 drops as β increases. In summary, when an

opponent’s achievement is at the same level or one lower than its own level, namely β and

β − 1 such that α = β (the chance of winning is even), members in both groups can have the

maximum effort incentive. Thus, we have the next proposition.

Proposition 1. Each group member has the maximum effort incentive to reach the next higher

achievement level when the opponent group is on the same achievement level.

These facts lead to an interesting characteristic of the Nash equilibrium. Even if members’

effort levels in G1 and G2 meet the conditions of Lemma 1 on a high achievement level such

that α = β, condition (ii) of Lemma 1 may not be met on the same achievement level α of G1

in the range of small β like β = 1. This means that group members do not have incentives to

expend much effort wastefully to reach much higher levels than the opponent. On the contrary,

members have effort incentives to be at the same level or one higher than an opponent on a

high achievement level. These results indicate that each member in a group tends to expend

the effort level at which his/her group can reach the same achievement level as that of the other

group because of the competition among groups.

In order for a group to reach a high achievement level at the Nash equilibrium, the opponent

also needs to reach a higher level. The next example shows this characteristic.
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Example 1. Now, we consider an example where vij = 8 for all j ∈ Gi, i = 1, 2, n1 = n2 = 40

and m1 = m2 = 10 < m3 = m4 = . . . = 12. From condition (ii) of Lemma 1, each member in

G1, given β of G2, can expend x1
j ≤

β
(α−1+β)(α+β)

v1j for their group to step up from level α − 1

to α. Considering condition (i) of Lemma 1, the range of the achievement level α, that is G1

can reach the Nash equilibrium, is such that (B):
∑40

j=1 x
1
j =

∑α
k=0 mk ≤ β

(α−1+β)(α+β)
× 8× 40.

When (α, β) = (3, 1), (B) is not met:
∑3

k=0 mk = 32 > β
(α−1+β)(α+β)

= 1
(3−1+1)(3+1)

320 = 80
3
.

In this case, the effort level in G1 cannot pay for the costs of α = 3. When (α, β) = (3, 2),

(B) is met:
∑3

k=0mk = 32 ≤ β
(α−1+β)(α+β)

= 2
(3−1+2)(3+2)

320 = 32. When (α, β) = (3, 3), (B) is

also met:
∑3

k=0 mk = 32 ≤ β
(α−1+β)(α+β)

= 3
(3−1+3)(3+3)

320 = 32. Thus, the achievement levels

(α, β) = (3, 2), (3, 3) can be realized as Nash equilibria at which β = 2 and 3 provide the same

and the maximum effort incentives to members in G1. In fact, for β > 3, the difference in

the winning probability of G1 is monotonically decreasing: ∆α
α−1(β) = ∆4

3(1) =
1
12

< ∆4
3(2) =

∆4
3(3) =

1
10

> ∆4
3(4) =

2
21

> ∆4
3(5) =

5
56

> . . .. Furthermore, members in G1 cannot pay for the

costs
∑4

k=0mk = 44,
∑5

k=0mk = 56, . . . in β > 3. The same argument is applied in G2 because

of symmetry.

If α is small, those α are reachable as Nash equilibria even for small β. When (α, β) = (2, 1),

(B) is met:
∑2

k=0 mk = 20 ≤ β
(α−1+β)(α+β)

= 1
(2−1+1)(2+1)

320 = 160
3
. When (α, β) = (2, 2), (B) is

also met:
∑2

k=0mk = 20 ≤ β
(α−1+β)(α+β)

= 2
(2−1+2)(2+2)

320 = 160
3
.

On the contrary, G1 cannot always reach a higher α even when β is the same level as α.

When (α, β) = (4, 4), (B) is not met:
∑4

k=0mk = 44 > β
(α−1+β)(α+β)

= 4
(4−1+4)(4+4)

320 = 160
7
.

Thus, when the population of groups is n1 = n2 = 40, who has the evaluation of vij = 8, the

maximum achievement level that both groups can reach is (α, β) = (3, 3). □

3 Existence of a Nash equilibrium

In this section, we show the existence of a Nash equilibrium. We can obtain the condition for

the existence of a Nash equilibrium from Lemma 1 and Corollary 1.

Lemma 2. There is at least one Nash equilibrium on positive achievement levels (α, β), α, β =

1, 2, 3, . . . if and only if β
(α−1+β)(α+β)

∑n1

j=1 v
1
j ≥

∑α
k=0mk and α

(α−1+β)(α+β)

∑n2

j=1 v
2
j ≥

∑β
k=0 mk.
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This lemma mentions that there is at least one Nash equilibrium at which each group reaches

a positive achievement level when the difference in members’ valuations of the public-good prize

from an achievement level to the next higher level is as much as or more than the costs of the

achievement levels. Hereafter, this is called a positive Nash.

If we can allocate positive effort levels to all group members such that the conditions of

Lemma 1 hold, we obtain a Nash equilibrium at which all players expend positive effort levels

without any free-riders. For example, see the rule of allocating costs in proportion to each

member’s valuation share in each group: xi
j =

vij∑ni
j=1 v

i
j

∑t
k=0mk for all j ∈ Gi, i = 1, 2 and

t = α, β. This is called “Expense Rule A” hereafter. Then, we have the next proposition from

Lemma 1 and Lemma 2.

Proposition 2. There is always at least one Nash equilibrium at which each group member

expends a positive effort level on each achievement level (α, β) such that the conditions of

Lemma 2 hold.

From Lemma 2 and Proposition 2, the next theorem is obtained.

Theorem 1. There is at least one Nash equilibrium at which all group members expend positive

effort if and only if 1
2

∑ni

j=1 v
i
j ≥ m1.

Theorem 1 means that the existence of at least one Nash equilibrium, which includes each

member who expends a positive effort level, is equivalent to each group having half of the

valuation of the group members that have as much as or more than the cost of the level (i.e.,

the effort for the first achievement). Otherwise, no member expends any effort.

In Baik (2008), Chowdhury et al. (2013), and Chowdhury and Topolyan (2016), only a

group member expends effort and others free-ride at the Nash equilibrium. On the contrary,

in our model, there is at least one Nash equilibrium at which all members in all groups expend

positive effort levels on each achievement level such that the conditions of Lemma 2 hold. This

result comes from the structure, namely that each group member’s effort is effective discretely

only when those efforts are gathered. In addition, in step-by-step group contests, expending

effort in each group has the same structure as a coordination game. Accordingly, it is possible

13



to achieve strategy profile x as a Nash equilibrium at which each member is allocated a positive

effort in a group with Expense Rule A. Indeed, the results of previous studies, namely that only

one member expends effort and the others free-ride, are not always consistent with the real-

world case of research grant competition, when many group members make effort to achieve

publications. The results of our model thus explain the case well when all group members

expend effort.

However, in any vij and mk, unrelated to the conditions of Lemma 2, there is a Nash

equilibrium such that xi
j = 0 for all i and j; as a result, f(X1) = f(X2) = 0. In Figure 2, this

is illustrated for the case of n1 = n2 = 2. The proof is similar to that of Lemma 1. Suppose,

given the others’ effort levels xi
−j = 0, that any member j in Gi deviates from xi

j = 0 to some

xi
j > 0. If the achievement level of Gi does not reach f(Xi) = 1 following this deviation, j does

not deviate, because that brings him/her a decrease in his/her payoff by the cost of effort xi
j.

If Gi reaches the achievement level 1 because of j’s effort, he/she has an incentive to expend

positive effort xi
j > 0 to his/her group because of vij −xi

j ≥ 1
2
vij − 0. However, this is impossible

because his/her rewarding effort cannot cover the cost: m1 > vij >
1
2
vij ≥ xi

j. Thus, x = 0 is

always a Nash equilibrium. Hereafter, this is called the zero Nash13.

Note the assumption that a public-good prize is allocated to either G1 or G2 when x = 0.

However, we may not obtain anything without members’ effort in the real world, even if our

opponents do nothing. In our model, we thus obtain the same results even when we assume

that no group wins anything when f(Xi) = 0 for all i. Thus, our model can explain both cases.

In other words, those cases have the same structure of the game intrinsically.

In addition, note the assumption that the value of the public-good prize does not increase

even if some group members expend effort. Under both assumptions, the zero Nash is more

efficient than any positive Nash for all groups14. These assumptions represent the case in which

members’ effort does not add any value. In the example of grant competition, the grant budget

is usually decided by the government or founders in advance. Grants are then allocated to the

13Even if we assume that no group obtains anything when Xi = 0 for all i, j does not deviate from xi
j = 0

because m1 > vij > xi
j > 0.

14However, much research effort brings about many social benefits. This factor is not included in the model.
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winner within the set budget. In this study, the assumption that the value of the prize does

not increase can be viewed as the budget being determined in advance15.

Under the condition of Lemma 2, we have the following two corollaries with regard to the

range of reachable achievement levels at Nash equilibria.

Corollary 2. If there is at least one Nash equilibrium on an achievement level α = β = t ≥ 2,

there is at least one Nash equilibrium on an achievement level of α = β = t− 1.

By applying this corollary repeatedly, we obtain Nash equilibria on the positive achievement

levels from α = β = t to α = β = 1. A similar logic to Corollary 2 can be applied to

(α, β) = (t, t− 1) and (t− 1, t).

Corollary 3. If there is at least one Nash equilibrium on an achievement level α = β = t ≥ 2,

there is at least one Nash equilibrium on (α, β) = (t, t− 1) and (t− 1, t), respectively.

In summary, Corollary 2 and Corollary 3 state that once there is at least one Nash equilib-

rium on achievement levels (α, β) = (t, t), t ≥ 2, there are always Nash equilibria on all (α, β),

(α − 1, β) and (α, β − 1) such that 0 ≤ α = β ≤ t. Note that as we showed in Example 1,

there are not always Nash equilibria on the other achievement levels of (t, t − r) or (t − r, t),

2 ≤ r ≤ t. This result means that when the other group expends a large effort level, the first

group also expends a large effort level. In other words, each member is given a larger incentive

to expend effort by the group contest than simply supplying the discrete public good in a group

without any group contests. Accordingly, we can say that the incentive is brought about by

the competitive environment among groups.

4 Comparison

Is the total effort level optimal for the group? At a Nash equilibrium at which all group

members expend positive efforts, the total level may not be the best for the group. In this

section, we compare the Nash equilibria in the previous section with those in a benchmark case

15We may also consider the case in which the budget rises. In this case, since each member’s valuation

increases as more effort is expended, the analysis is more complex.
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in which each group makes a decision as one player. We then show the difference between total

effort levels under group decisions and individual decisions. Here, the two groups decide their

achievement levels to maximize the sum of all members’ payoffs in their group:

U i(f(X1), f(X2)) ≡
ni∑
j=1

ui
j =

f(Xi)

f(X1) + f(X2)

ni∑
j=1

vij −
t∑

k=1

mk.

When these two groups decide their total effort levels Xi to maximize U i(f(X1), f(X2)) (i.e.,

groups decide their achievement levels), how much total effort do they expend? To maximize

their payoff, we calculate the difference in U1(f(X1), f(X2)) from α − 1 to α given the other

group’s achievement level. This difference is defined as ∆̄α
α−1(β) = U1(α, β) − U1(α − 1, β),

which represents the increment in G1’s payoff by stepping up its achievement level from α− 1

to α. We have

∆̄α
α−1(β) =

(
α

α + β

n1∑
j=1

v1j −
α∑

k=1

mk

)
−

(
α− 1

α− 1 + β

n1∑
j=1

v1j −
α−1∑
k=1

mk

)

=
β

(α + β)(α− 1 + β)

n1∑
j=1

v1j −mα

= ∆α
α−1(β)

n1∑
j=1

v1j −mα. (2)

(2) seems like the sum of the net marginal utility of α. Suppose that the condition of Theorem

1 holds; in other words, there is at leas one Nash equilibrium on a positive achievement level

α, β ≥ 1. Then, given β, we have 1
1+β

∑n1

j=1 v
1
j −m1 ≥ 0 of the condition of Lemma 2 at α = 1,

which is the same formula as (2) at α = 1. Note that ∆α
α−1(β) is a strictly decreasing function

of α from the calculation in the previous section and that mα ≤ mα+1 for any α. Clearly,

∆̄α+1
α (β)− ∆̄α

α−1(β) = − 2β

(α− 1 + β)(α + β)(α + 1 + β)
− (mα+1 −mα) < 0.

From this inequality, ∆̄α
α−1(β) is a monotonically decreasing function of α. If ∆̄1

0(β) < 0,

G1 does not expend any effort. However, that case does not occur under Theorem 1. Since

∆̄1
0(β) ≥ 0, G1 expends some effort to reach a positive achievement level. Thus, given β, we

have the maximum payoff at α ≥ 1 such that ∆̄α
α−1(β) ≥ 0 and ∆̄α+1

α (β) < 0. In other words,

such an α is the best response function to β in the case of a group decision. Then, we have the

following lemma.
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Lemma 3. Given the achievement level of the other group, the achievement level that one

group can reach when each individual maximizes his/her payoff is the same as or lower than

the achievement level when each group maximizes its total payoff.

When (2) is nonnegative, that condition is similar to Samuelson’s condition. On the con-

trary, the condition of individual decision ∆α
α−1(β)

∑n1

j=1 v
1
j −

∑α
k mk ≥ 0 is similar to that of

a Nash equilibrium in supplying a public-good. When the achievement levels of the effort in

each group rise step-by-step, the total effort level in the individual decision case is as much as

or less than the group optimal level for each group. This result comes from the characteristic

that each group member expends only effort at most by the incremental expected benefit when

his/her group reaches the next higher achievement level in the best response to others’ effort

levels.

The strategy profile of a Nash equilibrium in the group decision case on (α, β) needs to meet

∆̄α
α−1(β) ≥ 0, ∆̄α+1

α (β) < 0, ∆̄β
β−1(α) ≥ 0, and ∆̄β+1

β (α) < 0. In the next example, we compare

the reachable achievement levels in the group decision with those in each individual decision.

Example 2. We reconsider Example 1: vij = 8 for all j ∈ Gi, i = 1, 2, n1 = n2 = 40 and

m1 = m2 = 10 < m3 = m4 = . . . = 12. Then, (2) is ∆̄α
α−1(β) =

β
(α+β)(α−1+β)

× 8 × 40 − mk.

First, we check whether (α, β) = (3, 3), which is the upper limit of the reachable achievement

level in the case of each individual decision, is reachable in the group decision case. When the

achievement level is (3, 3), ∆̄3
2(3) =

3
(3+3)(3−1+3)

× 8 × 40 − 12 = 20 > 0. Thus, (3, 3) is also a

reachable achievement level in the group decision case. However, (3, 3) does not bring about

the maximum payoff to each group given the other because, given β = 3, G1 can increase its

payoff by 3
(4+3)(4−1+3)

× 8× 40− 12 = 76
7
by deviating from α = 3 to 4.

Next, we check the Nash equilibrium in the group decision case. When (7, 7), ∆̄7
6(7) =

7
(7+7)(7−1+7)

× 8 × 40 − 12 = 4
13

> 0. This means that G1’s payoff increases by 4
13

by stepping

up from α = 6 to 7, given β = 7. If G1 steps up from α = 7 to 8 given β = 7, ∆̄8
7(7) =

7
(8+7)(8−1+7)

× 8 × 40 − 12 = −4
3
< 0. This stepping up brings G1 a decrease in its payoff by

4
3
. Noting that (2) is strictly and monotonically decreasing as α increases, α = 7, given β = 7,

is the unique maximum point. The same argument applies to G2 owing to symmetry. Thus,
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(7, 7) is a Nash equilibrium in the group decision case.

In the case of each individual decision, the highest reachable achievement level of each

group is (3, 3) at the Nash equilibria. In the case of each group decision, the highest reachable

achievement is (7, 7) at the Nash equilibrium. In Lemma 3, we have the result that given the

other group’s achievement level, the reachable achievement level in the group decision case is

as high as or higher than that in each individual decision generally16. This example shows

that the level in the group decision case can be a few times higher than that in the individual

decision case. □

5 Consideration of the coalition-proof Nash equilibrium

In step-by-step group contests, there are multiple Nash equilibria, as we showed in the previous

sections. In our model, as well as in Lee (2012) and Chowdhury et al. (2013), we can thus

employ the coalition-proof Nash equilibrium. When we carefully examine the coalition-proof

Nash equilibrium of Lee (2012) and Chowdhury et al. (2013), they use this equilibrium concept

without any strict definition. The coalition-proof Nash equilibrium defined by Bernheim et

al. (1987) is generally used in game theory. However, the coalition-proof Nash equilibrium

of Lee (2012) and Chowdhury et al. (2013) does not share the same definition as that of

Bernheim et al. (1987). Quartieri and Shinohara (2016) point out this problem, and provide

the detailed considerations of the differences between Lee (2012) and Bernheim et al. (1987),

strictly redefining the coalition-proof Nash equilibrium of Lee (2012) as the group-proof Nash

equilibrium17. Briefly, the coalition-proof Nash equilibrium of Lee (2013) and Chowdhury

et al. (2013) considers the possibility of communication among only group members rather

than with the members of other groups, while that of Bernheim et al. (1987) considers the

possibility of communication among all players. Since it seems implausible in group contests

that group members would communicate with those in rival groups and agree to deviate to

16If (2) is nonnegative only in (α, β) = (1, 1), both cases are the same level at a Nash equilibrium.
17See Bernheim et al. (1987) and Quartieri and Shinohara (2016) for the strict definitions of the coalition-proof

Nash equilibrium and group-proof Nash equilibrium, respectively.
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another strategy, the group-proof Nash equilibrium is a more appropriate refinement for use in

the contests setting, as Quartieri and Shinohara (2016) mention.

The group-proof Nash equilibrium does not always bring about uniqueness in our model in

contrast to the models of Lee (2012) and Chowdhury et al. (2013). We reconsider Example 1.

The achievement levels of (α, β) = (2, 2) and (3, 3) are at the Nash equilibria, as we checked

in the example. For instance, x∗ = (1
2
, 1
2
, . . . , 1

2
; 1
2
, 1
2
, . . . , 1

2
) on (α, β) = (2, 2) and x∗∗ =

(4
5
, 4
5
, . . . , 4

5
; 4
5
, 4
5
, . . . , 4

5
) on (3, 3) are Nash equilibria strategies because condition (B) of Example

1 is met at x∗ and at x∗∗. In addition to x∗∗, x∗ is also a group-proof Nash equilibrium. Even

if fewer than 40 members communicate and agree to deviate from 1
2
to any other strategy

recursively, given the others’ strategies, this does not benefit any member in the coalition.

In fact, suppose that at x∗, 39 members without only member j communicate and agree to

change xi∗
−j = 1

2
to 4

5
, which meets (B) of Example 1 and which is only a strategy with the

possibility of being more beneficial for each member in the coalition when their group reaches

the achievement level 3 from 2. However, the group cannot reach the achievement level 3

because
∑ni

j=1 x
i
j =

4
5
× 39 + 1

2
= 31.7 <

∑3
k=0mk = 32. In addition, any strategies less than

1
2
by any member coalitions bring about less benefit. Thus, we cannot always obtain a unique

group-proof Nash equilibrium under the discrete contest success function.

Indeed, all Nash equilibria on low achievement levels are eliminated by employing the group-

proof Nash equilibrium because three members in a group communicate and agree to expend

effort level 10
3

at the zero Nash, given the others’ zero effort, which is a Nash equilibrium

strategy on (1, 0), (0, 1), and (1, 1). In addition, any Nash equilibria on (1, 1) are excluded.

When 15 members at most in a group communicate and agree to deviate from any Nash

equilibria strategy on (1, 1) to 4
3
, the group reaches achievement level 2 and all group members

then benefit more. Thus, any Nash equilibria on low achievement levels can be eliminated by

the group-proof Nash equilibrium.
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6 Conclusion

In this study, we focused on step-by-step group contests with group-specific public-good prizes,

such as research grant competition. In particular, we investigated how the behaviors of free-

riders in previous studies change when group members’ effort is effective only when it is summed

and reaches some achievement level. A discrete step function was introduced as a group impact

function in our model in contrast to the standard continuous, maximum, or minimum functions

adopted in previous studies. We showed the necessary and sufficient conditions for the Nash

equilibrium and those for its existence. We also showed that there is always at least one

Nash equilibrium at which each group member expends a positive effort level when a positive

achievement level is reachable. These results are different from those of previous studies in

which some group members do not expend any effort at the Nash equilibria. The results

explain that in the real world, all members often expend some positive effort in research groups

at universities owing to the characteristics of step-by-step group competition. However, each

member expends at most only an incremental amount of his/her benefit by moving up to the

next higher achievement level. This effort is less than or the same as, at most, the effort when a

group maximizes its own benefits. In addition, by surveying the concepts of the coalition-proof

Nash equilibrium and the group-proof Nash equilibrium, we showed that the group-proof Nash

equilibrium does not always bring about uniqueness despite refining the Nash equilibria on low

achievement levels.

In future research, we may consider the case in which each individual valuation of group-

specific public-good prizes increases as members’ effort levels increase. In grant competition,

the effort that group members expend does not increase the provision of research grants. In

the real world, effort in groups adds some value. However, the characterization of the Nash

equilibrium in this case would be complicated because the results depend on how the effort

adds value. This issue needs to be studied in future research.
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Appendix: Proofs

Proof of Lemma 1. (1) Necessity. Suppose that x∗ is a Nash equilibrium at which G1 and

G2 are on achievement levels α and β, respectively and x∗ does not meet (i) or (ii), that is

for some (i, l) ∈ {(1, α), (2, β)}, (i’)
∑ni

j=1 x
i∗
j >

∑l
k=0 mk or (i”)

∑ni

j=1 x
i∗
j <

∑l
k=0mk, or (ii’)

β
(α−1+β)(α+β)

v1j < x1∗
j for some j ∈ G1, or

α
(α−1+β)(α+β)

v2j < x2∗
j for some j ∈ G2.

(i’) contradicts the best response of j because decreasing j’s effort that is sufficiently small

ϵ > 0 increases his/her payoff by ϵ. (i”) means that neither G1 nor G2 is on α or β, or both

G1 and G2 are not on α or β. Thus, these contradict that x∗ is a Nash equilibrium on α and

β. Noting that the upper limit of each member’s effort is x1
j ≤

β
(α−1+β)(α+β)

v1j for each j ∈ G1

and x2
j ≤ α

(α−1+β)(α+β)
v2j for each j ∈ G2 in the best responses, (ii’) contradicts these limits; in

other words, some small xi
j < xi∗

j brings a better payoff to j. Thus, (i) and (ii) are necessary

conditions.

(2) Sufficiency. Suppose that x∗, which meets both (i) and (ii), is not a Nash equilibrium.

Given the others’ effort, one of the members of G1, say j ∈ G1, is made better off by deviating

from x1∗
j to x1

j , (A): P1(X
∗
1 , X

∗
2 )v

1
j − x1∗

j < P1(X1, X
∗
2 )v

1
j − x1

j .

First, suppose that x1
j > x1∗

j . G1 needs to reach at least one higher achievement level α+ 1

for the increase in j’s effort to obtain P1(X1, X
∗
2 ) > P1(X

∗
1 , X

∗
2 ). The condition under which

j’s payoff increases by changing his/her effort is

( α+1
α+1+β

v1j − x1
j)− ( α

α+β
v1j − x1∗

j ) > 0

⇐⇒ β
(α+1+β)(α+β)

v1j > x1
j − x1∗

j .

Noting that v1j < mk for all positive k and that the coefficient of v1j on the left-hand side is less

than one, we have mk > v1j > β
(α+1+β)(α+β)

v1j > x1
j − x1∗

j > 0. This means that G1 cannot reach

one higher achievement level α + 1 by only j’s increase in effort. This contradicts (A).

Second, suppose that x1
j < x1∗

j . Then, the achievement level of G1 drops from α to α−1 once

j decreases his/her efforts from (i). The condition under which j benefits more by decreasing

his/her effort is

( α−1
α−1+β

− x1
j)− ( α

α+β
v1j − x1∗

j ) > 0

⇐⇒ β
(α−1+β)(α+β)

v1j < x1∗
j − x1

j ≤ x1∗
j .
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The last inequality contradicts (ii).

A similar argument is applied when the deviant is a member of G2. Thus, (i) and (ii) are

also sufficient conditions. □

Proof of Corollary 1. By using (i) of Lemma 1, the sum of condition (ii) of Lemma 1 of all

the members in Gi is the corollary’s condition. □

Proof of Lemma 2. (1) Necessity. Suppose that the condition is not met when there is

at least one Nash equilibrium on some (α, β). Then, there is at least one pair of (α, β) meets

β
(α−1+β)(α+β)

∑n1

j=1 v
1
j <

∑α
k=0mk or α

(α−1+β)(α+β)

∑n2

j=1 v
2
j <

∑β
k=0 mk at the Nash equilibrium.

These inequalities contradict Corollary 1. Thus, the condition is a necessity.

(2) Sufficiency. When the condition is met, there is at least one strategy profile x at

which we can allocate all members to expend effort levels for their own groups such that

x1
j ≤ β

(α−1+β)(α+β)
v1j , x2

j ≤ α
(α−1+β)(α+β)

v2j ,
∑n1

j=1 x
1
j =

∑α
k=1mk and

∑n2

j=1 x
2
j =

∑β
k=1 mk.

For example, we allocate some members from member 1 in ascending order in each group

their full effort level, x1
j = β

(α−1+β)(α+β)
v1j and x2

j = α
(α−1+β)(α+β)

v2j , allocate only last one

member x1
j ≤

β
(α−1+β)(α+β)

v1j and x2
j ≤ α

(α−1+β)(α+β)
v2j , and allocate the others xi

j = 0, such that∑n1

j=1 x
1
j =

∑α
k=0mk and

∑n2

j=1 x
2
j =

∑β
k=0 mk. From Lemma 1, this x is a Nash equilibrium.

Thus, the condition is sufficient. □

Proof of Proposition 2. From Lemma 2, we can allocate each member in each group at

least one positive effort level, xi∗
j > 0, for all i and j, by using Expense Rule A, such that the

conditions of Lemma 1: β
(α−1+β)(α+β)

v1j ≥ x1∗
j , α

(α−1+β)(α+β)
v2j ≥ x2∗

j ,
∑n1

j=1 x
1∗
j =

∑α
k=0mk and∑n2

j=1 x
2∗
j =

∑β
k=0mk. In fact, we multiply both sides of the conditions of Lemma 2 by

vij∑ni
j=1 v

i
j

.

Then, we have the conditions of Lemma 1. Thus, this proposition holds.

Such x∗ is a strategy profile at a Nash equilibrium. Suppose that anyone, say member h,

in G1 deviates his/her effort level from x1∗
h > 0 to x1

h < x1∗
h , given the other members’ effort

level in each group. Then, since
∑α

k=0mk =
∑n1

j=1 x
1∗
j >

∑n1

j ̸=h x
1∗
j + x1

h, the achievement level
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of G1 declines from α to α− 1. The change in h’s payoff is
(

α−1
α−1+β

v1h − x1
h

)
−
(

α
α+β

v1h − x1∗
h

)
=

− β
(α−1+β)(α+β)

v1h + x1∗
h − x1

h < − β
(α−1+β)(α+β)

v1h + x1∗
h ≤ 0 from the condition of Lemma 1. h’s

payoff decreases strictly following this deviation. The same logic applies to anyone in G2. Thus,

x∗ induces a Nash equilibrium. □

Proof of Theorem 1. (1) Necessity. Suppose that there is at least one Nash equilibrium on

the positive achievement levels (α, β), α ≥ 1, and β ≥ 1. From Proposition 2, there is also at

least one Nash equilibrium at which each member in each group expends a positive effort level

on the achievement levels. In addition, we have β
(α−1+β)(α+β)

∑n1

j=1 v
1
j ≥

∑α
k=0mk from Lemma

2. Noting the coefficient of the summation of the valuation on the left-hand side, we have

1
2
≥ β

(α−1+β)(α+β)
for all α ≥ 1 and β ≥ 1 because of 1

2
− β

(α−1+β)(α+β)
= β(β−1)+2(α−1)β+α(α−1)

2(α−1+β)(α+β)
≥ 0.

Accordingly,

1

2

n1∑
j=1

v1j ≥ β

(α− 1 + β)(α + β)

n1∑
j=1

v1j ≥
α∑

k=0

mk ≥ m1.

The same calculation applies to G2. Hence,
1
2

∑ni

j=1 v
i
j ≥ m1 is a necessary condition.

(2) Sufficiency. Suppose that the condition is met. Since the condition of Lemma 2 is

1
2

∑n1

j=1 v
1
j ≥ m1 at (α, β) = (1, 1), there is at least one Nash equilibrium at which each member

in each group expends a positive effort level on the achievement levels (1, 1), according to

Lemma 2 and Proposition 2. □

Proof of Corollary 2. Suppose that Lemma 2 holds on α = β = t, t ≥ 2. Noting that

∆t
t−1(t) =

1
2(2t−1))

on α = β = t, we compare the benefit and cost on t with those at t− 1. For

all t ≥ 2,

1

2(2(t− 1)− 1)

ni∑
j=1

vij >
1

2(2t− 1)

ni∑
j=1

vij ≥
t∑

k=0

mk >
t−1∑
k=0

mk. (3)

This inequality indicates that Lemma 2 also holds at α = β = t−1 when that is at t ≥ 2. Thus,

there is also at least one Nash equilibrium at t− 1 if there is at least one Nash equilibrium at

t. □

Proof of Corollary 3. Suppose that there is at least one Nash equilibrium on an achievement
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level α = β = t ≥ 2. From (1), ∆t
t−1(t) = 1

2(2t−1))
= ∆t

t−1(t − 1) on α = β = t. Then,

1
2(2t−1)

∑ni

j=1 v
i
j ≥

∑t
k=0mk holds in one group Gi on the other group’s achievement levels t and

t− 1. When the achievement level in Gi is t,
1

2(2(t−1)−1)

∑n−i

j=1 v
−i
j >

∑t−1
k=0mk holds in the other

group G−i from (3) in the proof of Corollary 2. From Lemma 2, there is at least one Nash

equilibrium on (α, β) = (t, t − 1). The same logic applies in the case of the achievement level

(t− 1, t). □

Proof of Lemma 3. α for maximizing the group’s payoff has to meet ∆̄α
α−1(β) ≥ 0 and

∆̄α+1
α (β) < 0. On the contrary, from Corollary 1, the achievement level ofG1 in the case in which

each individual maximizes his/her payoffs meets β
(α−1+β)(α+β)

∑n1

j=1 v
1
j−
∑α

k=0mk ≥ 0. Note that

in the previous section, ∆α
α−1(β) is a strictly decreasing function of α and

∑α
k=1 mk ≥ mα for

all α ≥ 1. Comparing β
(α−1+β)(α+β)

∑n1

j=1 v
1
j −
∑α

k=0mk ≥ 0 with β
(α+β)(α−1+β)

∑n1

j=1 v
1
j −mα ≥ 0,

α in the case of maximizing each individual’s payoff is the same level as or less than that in the

case of each group maximizing its payoff for any β ≥ 1. A similar argument applies in G2. □
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Figure 2: Nash equilibria in each group on (f(Xi), f(X−i)) = (t, s) in n1 = n2 = 2
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